World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: The Sixth Asia-Pacific Bioinformatics Conference (APBC 2008); Guest Editor: Alvis Brazma, Satoru Miyano and Tatsuya AkutsuNo Access

SYMBOLIC APPROACHES FOR FINDING CONTROL STRATEGIES IN BOOLEAN NETWORKS

    https://doi.org/10.1142/S0219720009004084Cited by:46 (Source: Crossref)

    We present an exact algorithm, based on techniques from the field of Model Checking, for finding control policies for Boolean Networks (BN) with control nodes. Given a BN, a set of starting states, I, a set of goal states, F, and a target time, t, our algorithm automatically finds a sequence of control signals that deterministically drives the BN from I to F at, or before time t, or else guarantees that no such policy exists. Despite recent hardness-results for finding control policies for BNs, we show that, in practice, our algorithm runs in seconds to minutes on over 13,400 BNs of varying sizes and topologies, including a BN model of embryogenesis in Drosophila melanogaster with 15,360 Boolean variables. We then extend our method to automatically identify a set of Boolean transfer functions that reproduce the qualitative behavior of gene regulatory networks. Specifically, we automatically learn a BN model of D. melanogaster embryogenesis in 5.3 seconds, from a space containing 6.9 × 1010 possible models.