World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: The Sixth Asia-Pacific Bioinformatics Conference (APBC 2008); Guest Editor: Alvis Brazma, Satoru Miyano and Tatsuya AkutsuNo Access

AUTOMATIC MODELING OF SIGNALING PATHWAYS BY NETWORK FLOW MODEL

    https://doi.org/10.1142/S0219720009004138Cited by:20 (Source: Crossref)

    Signal transduction is an important process that controls cell proliferation, metabolism, differentiation, and so on. Effective computational models which unravel such a process by taking advantage of high-throughput genomic and proteomic data are highly demanded to understand the essential mechanisms underlying signal transduction. Since protein–protein interaction (PPI) plays an important role in signal transduction, in this paper, we present a novel method for modeling signaling pathways from PPI networks automatically. Given an undirected weighted protein interaction network, finding signaling pathways is treated as searching for optimal subnetworks according to some cost function. To cope with this optimization problem, a network flow model is proposed in this work to extract signaling pathways from protein interaction networks. In particular, the network flow model is formalized and solved as a mixed integer linear programming (MILP) model, which is simple in algorithm and efficient in computation. The numerical results on two known yeast MAPK signaling pathways demonstrate the efficiency and effectiveness of the proposed method.