World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Lead-free 0–3-type composites: From piezoelectric sensitivity to modified figures of merit

    https://doi.org/10.1142/S2010135X21500107Cited by:6 (Source: Crossref)

    Effective piezoelectric properties, electromechanical coupling factors (ECF) and figures of merit (FOM) are studied in lead-free 0–3-type composites based on novel ferroelectric 0.965(K0.48Na0.52)(Nb0.96Sb0.04)O3–0.035Bi0.5Na0.5Zr0.15Hf0.75O3 ceramic. Systems of prolate ceramic inclusions are surrounded by a large polymer matrix that can be either monolithic (in the 0–3 composite) or porous (in the 0–3–0 composite). Non-monotonic volume-fraction dependences of the effective piezoelectric coefficients g3j, ECF k3j, squared FOM d3jg3j and their modified analogs for stress-driven systems are analysed, and examples of the high longitudinal piezoelectric sensitivity (g33> 100 mV ⋅m/N) are considered. A role of microgeometrical factors, that promote the large effective parameters and anisotropy of properties in the 0–3-type composites, is highlighted. New “aspect ratio — volume fraction” diagrams are first built to describe conditions for high piezoelectric sensitivity, large modified FOM and their anisotropy in the studied composites. These advanced materials can be of value for piezoelectric sensor, energy-harvesting and related applications.

    References

    • 1. E. K. Akdogan, M. Allahverdi and A. Safari , Piezoelectric composites for sensor and actuator applications, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746 (2005). CrossrefGoogle Scholar
    • 2. F. Wang, C. He and Y. Tang , Single crystal 0.7Pb(Mg1/3Nb2/3)- O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique, Mater. Chem. Phys. 105, 273 (2007). CrossrefGoogle Scholar
    • 3. K. Ren, Y. Liu, X. Geng, H. F. Hofmann and Q. M. Zhang , Single crystal PMN–PT / epoxy 1–3 composite for energy-harvesting application, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 631 (2006). CrossrefGoogle Scholar
    • 4. V. Yu. Topolov and C. R. Bowen , Electromechanical Properties in Composites Based on Ferroelectrics (Springer, London, 2009). Google Scholar
    • 5. I. Coondoo, N. Panwar and A. Kholkin , Lead-free piezoelectrics: Current status and perspectives, J. Adv. Dielect. 3, 1330002 (2013). LinkGoogle Scholar
    • 6. C.-H. Hong, H.-P. Kim, B.-Y. Ghoi, H.-S. Han, J.-S. Son, C.W. Ahn and W. Jo , Lead-free piezoceramics — Where to move on?, J. Materiomics 2, 1 (2016). CrossrefGoogle Scholar
    • 7. D. Maurya, M. Peddigari, L. D. Geng, N. Sharpes, V. Annapureddy, H. Palneedi, R. Sriramdas, Y. Yan, H.-C. Song, Y. U. Wang, J. Ryu and S. Priya , Lead-free piezoelectric materials and composites for high power density energy harvesting, J. Mater. Res. 33, 2235 (2018). CrossrefGoogle Scholar
    • 8. D. Zhou, K. H. Lam, Yan Chen, Q. Zhang, Y. C. Chiu, H. Luo, J. Dai and H. L. W. Chan , Lead-free piezoelectric single crystal based 1–3 composites for ultrasonic transducer applications, Sens. Actuators A Phys. 182, 95 (2012). CrossrefGoogle Scholar
    • 9. V. L. Stuber, D. B. Deutz, J. Bennett, D. Cannel, D. M. de Leeuw, S. van der Zwaag and P. Groen , Flexible lead-free piezoelectric composite materials for energy harvesting applications, Energy Technol. 7, 177 (2019). CrossrefGoogle Scholar
    • 10. V. Yu. Topolov, A. N. Isaeva and P. Bisegna , Novel lead-free composites with two porosity levels: Large piezoelectric anisotropy and high sensitivity, J. Phys. D Appl. Phys. 53, 395303 (2020). CrossrefGoogle Scholar
    • 11. V. Yu. Topolov, C. R. Bowen and A. N. Isaeva , Anisotropy factors and electromechanical coupling in lead-free 1–3-type composites, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65, 1278 (2018). CrossrefGoogle Scholar
    • 12. S. A. Riquelme and K. Ramam , Dielectric and piezoelectric properties of lead free BZT-BCT/PVDF flexible composites for electronic applications, Mater. Res. Express 6, 116331 (2019). CrossrefGoogle Scholar
    • 13. S. Qian, L. Qin, J. He, X. Niu, J. Qian, J. Mu, W. Geng, X. Hou and X. Chou , A stretchable piezoelectric elastic composite, Mater. Lett. 236, 96 (2019). CrossrefGoogle Scholar
    • 14. S. A. Wilson, G. M. Maistros and R. W. Whatmore , Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis, J. Phys. D: Appl. Phys. 38, 175 (2005). CrossrefGoogle Scholar
    • 15. H. Khanbareh, V. Yu. Topolov and C. R. Bowen , Piezo-Particulate Composites. Manufacturing, Properties, Applications (Springer Nature Switzerland, Cham, 2019). CrossrefGoogle Scholar
    • 16. H. Khanbareh, K. de Boom, S. van der Zwaag and W.A. Groen , Highly sensitive piezo particulate-polymer foam composites for robotic skin application, Ferroelectrics 515, 25 (2017). CrossrefGoogle Scholar
    • 17. F.-Z. Yao, K. Wang and J.-F. Li , J. Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics, J. Appl. Phys. 113, 174105 (2013). CrossrefGoogle Scholar
    • 18. L. Qiao, G. Li, H. Tao, J. Wu, Z. Xu and F. Li , Full characterization for material constants of a promising KNN-based lead-free piezoelectric ceramic, Ceram. Int. 46, 5641 (2020). CrossrefGoogle Scholar
    • 19. R. E. Newnham, D. P. Skinner and L. E. Cross , Connectivity and piezoelectric — pyroelectric composites, Mater. Res. Bull. 13, 525 (1978). CrossrefGoogle Scholar
    • 20. M. L. Dunn and M. Taya , Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites, Internat. J. Solids Struct. 30, 161 (1993). CrossrefGoogle Scholar
    • 21. J. H. Huang and S. Yu , Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion, Composites Eng. 4, 1169 (1994). CrossrefGoogle Scholar
    • 22. M. L. Dunn and M. Taya , Electromechanical properties of porous piezoelectric ceramics. J. Am. Ceram. Soc. 76, 1697 (1993). CrossrefGoogle Scholar
    • 23. T. Ikeda , Fundamentals of Piezoelectricity (Oxford University Press, Oxford, 1990). Google Scholar
    • 24. J. I. Roscow, H. Pearce, H. Khanbareh, S. Kar-Narayan and C. R. Bowen , Modified energy harvesting figures of merit for stress and strain-driven piezoelectric systems, Eur. Phys. J. Special Topics 228, 1537 (2019). CrossrefGoogle Scholar
    • 25. K. E. Evans and K. L. Alderson , The static and dynamic moduli of auxetic microporous polyethylene, J. Mater. Sci. Lett. 11, 1721 (1992). CrossrefGoogle Scholar
    • 26. V. Yu. Topolov, P. Bisegna and C. R. Bowen , Piezo-Active Composites. Microgeometry — Sensitivity Relations (Springer Internat., Cham, 2018). CrossrefGoogle Scholar
    • 27. V. Yu. Topolov, P. Bisegna and C. R. Bowen , Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals, Ferroelectrics 413, 176 (2011). CrossrefGoogle Scholar
    • 28. M. Fukushima, T. Fujiwara, T. Fey and K. Kakimoto , One- or two-dimensional channel structures and properties of piezoelectric composites via freeze-casting, J. Am. Ceram. Soc. 100, 5400 (2017). CrossrefGoogle Scholar
    • 29. N. K. James, D. B. Deutz, R. K. Bose, S. van der Zwaag and P. Groen , High piezoelectric voltage coefficient in structured lead-free (K, Na, Li)NbO3 particulate — epoxy composites, J. Am. Ceram. Soc. 99, 3957 (2016). CrossrefGoogle Scholar