World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Out-of-plane buckling strength analysis for typical single tube CFST arch bridge by finite element method

    https://doi.org/10.1142/9789813225237_0042Cited by:2 (Source: Crossref)
    Abstract:

    To provide practical calculation method for analyzing the out-of-plane stability of single tube CFST arch bridge and the out-of-plane elastic stability of typical single tube CFST arch bridge was analyzed by finite element method. Firstly, the basic structural data and statistic parameters of 25 single tube CFST arch bridges were collected and analyzed using statistical approaches. Secondly, on the basis of the existing data, the finite element models of three types of typical single tube CFST arch bridges with span lengths of 50∼59 m, 60∼69 m and 70∼79 m were established and their safety performance were examined. The basic assumption of using elastic stability coefficient to analyze the outof- plane elastic stability of typical arch bridge and the calculation methods for vertical and transverse loads were provided. Different finite element methods were adopted to analyze the out-of-plane stability of typical arch bridges and the finite element calculation methods for out-of-plane stability of typical arch bridges were determined. The results indicate that the finite element model of the typical single tube CFST arch bridge established based on the statistic data is able to reflect the actual condition of the structure, and it is proper to use stability coefficients of dead and live loads to calculate the out-of-plane load bearing capacity and the ultimate load bearing capacity of typical arch bridges.