World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPACT MODELING OF DOUBLE AND TRI-GATE MOSFETs

    https://doi.org/10.1142/9789814583190_0004Cited by:0 (Source: Crossref)
    Abstract:

    This chapter presents some insights into the modeling of different Multi-Gate SOI MOSFET structures, and in particular Double-Gate MOSFETs (DG MOSFETs) and Tri-Gate MOSFETs (TGFETs). For long-channel case an electrostatic model can be developed from the solution of the 1D Poisson's equation (in the case of DG MOSFETs) and the 2D Poisson's equation in the section perpendicular to the channel (in the case of TGFETs). Allowing it to be incorporated in quasi-2D compact models. For short-channel devices a model can be derived from a 2D (in the case of DG MOSFETs) or a 3D (in the case of TGFETs) electrostatic analysis. The models were successfully compared with 2D and 3D TCAD simulations and, in some cases, experimental measurements. Short-channel effects, such as subthrehold slope degradation, threshold voltage roll-off and DIBL were accurately reproduced.