World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHARACTERIZATION OF CONDUCTION MECHANISMS RELEVANT TO DEVICE PERFORMANCE IN NANOPERFORATED GRAPHENE

    https://doi.org/10.1142/S0129156411006982Cited by:7 (Source: Crossref)

    We have recently reported on the synthesis and characterization of a new form of nanostructured graphene that we call "nanoperforated graphene". Nanoperforated graphene is fabricated by etching a periodic array of nanoscale holes into atomic membranes of graphene to create an ultrathin superlattice-like structure. Nanoperforated graphene demonstrates semiconductor-like behavior and we have realized room-temperature field-induced conductance modulation as high as 450 (compared with < 10 for unpatterned graphene) with field-effect mobilities of ~ 1 cm2V-1s-1. Here, we discuss the conduction mechanisms in nanoperforated graphene and the relevance of this new material for field-effect transistor devices. In nanoperforated graphene with 15 nm nanoconstrictions, we observe that the low-bias mobility is independent of temperature, consistent with elastic scattering-limited conduction. At low temperatures, a transport gap limits conduction in the sub-threshold regime and affects the threshold voltage for band conduction. We show that the high-bias electrical characteristics of nanoperforated graphene are similar to "artificial solids," a class of materials made of 2D arrays of Coulomb islands, consistent with observed Coulomb Blockade features in the sub-threshold regime. Currently, the device characteristics of the nanopatterned graphene material are found to be suitable for large-area, thin-film transistor applications. Future higher-performance applications are expected.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas