World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Quantum Magnets, Quantum Dynamics and Phase TransitionsNo Access

MAGNETIC ORDERING OF ANTIFERROMAGNETS ON A SPATIALLY ANISOTROPIC TRIANGULAR LATTICE

https://doi.org/10.1142/S021797921005716XCited by:3 (Source: Crossref)

We study the spin-1/2 and spin-1 Heisenberg antiferromagnets (HAFs) on an infinite, anisotropic, two-dimensional triangular lattice, using the coupled cluster method. With respect to an underlying square-lattice geometry the model contains antiferromagnetic (J1 > 0) bonds between nearest neighbours and competing bonds between next-nearest-neighbours across only one of the diagonals of each square plaquette, the same diagonal in each square. In a topologically equivalent triangular-lattice geometry the model has two sorts of nearest-neighbour bonds, with bonds along parallel chains and with J1 bonds providing an interchain coupling. The model thus interpolates between an isotropic HAF on the square lattice at one extreme (κ = 0) and a set of decoupled chains at the other (κ → ∞), with the isotropic HAF on the triangular lattice in between at κ = 1. For the spin-1/2 model, we find a weakly first-order (or possibly second-order) quantum phase transition from a Néel-ordered state to a helical state at a first critical point at κc1 = 0.80 ± 0.01, and a second critical point at κc2 = 1.8 ± 0.4 where a first-order transition occurs between the helical state and a collinear stripe-ordered state. For the corresponding spin-1 model we find an analogous transition of the second-order type at κc1 = 0.62 ± 0.01 between states with Néel and helical ordering, but we find no evidence of a further transition in this case to a stripe-ordered phase.

An Erratum has been published. .

You currently do not have access to the full text article.

Recommend the journal to your library today!