Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0218126625500562Cited by:0 (Source: Crossref)

Biomedical applications like body area networks (BAN) necessitate the construction of power optimized SRAMs to enhance the batteries life at BAN nodes. In this work, we have designed a one-sided near-threshold 9TSRAM for low-power portable biomedical applications. The proposed near threshold 9T SRAM (PNT9T SRAM) employs a cross-connected Schmitt trigger (ST) inverter and normal inverter in its cell core. A separate path for reading is also employed to eliminate the reading disturbance. The write disturbance is removed in the PNT9T SRAM by removing the trail from VDD and ground. The write ability is improved with the use of a feedback-cutting approach. The leakage power dissipation of the memory is mitigated by using a tail transistor, virtual ground (VGND). To evaluate the performance, the PNT9T SRAM is compared with conventional 6T (C6T), ST11T, ST9T, TG9T, SBL9T, and SE9T SRAM cells using FinFET 18nm technology at 0.6V power supply. The PNT9T SRAM mitigates the read power, write power, and leakage power by 51.10%, 50.57%, and 78.97%. Furthermore, the read and write static noise margins were improved by 54% and 39.5%, respectively, compared to C6T SRAM.

This paper was recommended by Regional Editor Emre Salman.