World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Entanglement recovery by weak measurement reversal in tripartite systems

    https://doi.org/10.1142/S0219749923500375Cited by:0 (Source: Crossref)

    Entanglement protection from noisy environments is an essential task in practical quantum information and communication. In this paper, we investigate the entanglement recovery of an amplitude-damped tripartite GHZ state by a weak-measurement reversal procedure. In particular, we emphasize the key importance of the inequivalency of probability amplitudes of the tripartite system under the recovery technique. We explore the maximal and non-maximal tripartite entangled state scenarios under amplitude damping noise in the absence and presence of weak measurement reversal procedures. Importantly, the non-maximal entangled state turns out to be a good choice for the entanglement recovery via weak-measurement reversal procedure.