World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Active Exoskeletons; Guest Editor: Miomir VukobratovicNo Access

UPPER LIMB POWERED EXOSKELETON

    https://doi.org/10.1142/S021984360700114XCited by:54 (Source: Crossref)

    An exoskeleton is a wearable robot with joints and links corresponding to those of the human body. With applications in rehabilitation medicine, virtual reality simulation, and teleoperation, exoskeletons offer benefits for both disabled and healthy populations. Analytical and experimental approaches were used to develop, integrate, and study a powered exoskeleton for the upper limb and its application as an assistive device. The kinematic and dynamic dataset of the upper limb during daily living activities was one among several factors guiding the development of an anthropomorphic, seven degree-of-freedom, powered arm exoskeleton. Additional design inputs include anatomical and physiological considerations, workspace analyses, and upper limb joint ranges of motion. Proximal placement of motors and distal placement of cable-pulley reductions were incorporated into the design, leading to low inertia, high-stiffness links, and back-drivable transmissions with zero backlash. The design enables full glenohumeral, elbow, and wrist joint functionality. Establishing the human-machine interface at the neural level was facilitated by the development of a Hill-based muscle model (myoprocessor) that enables intuitive interaction between the operator and the wearable robot. Potential applications of the exoskeleton as a wearable robot include (i) an assistive (orthotic) device for human power amplifications, (ii) a therapeutic and diagnostics device for physiotherapy, (iii) a haptic device in virtual reality simulation, and (iv) a master device for teleoperation.