Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Both sensory information and mechanical properties of the musculoskeletal system are necessary for fast and appropriate reactions of humans and animals to environmental perturbations. In this paper, we focus on the musculoskeletal system and study the stability of a human elbow in an equilibrium state. We derive a biomechanical model of the human elbow, including an antagonistic pair of muscles, and investigate the stability analytically based on the theory of Ljapunov. Depending on the elbow angle and the level of coactivation, we obtain the following three qualitatively different behaviors: unstable, stable with real eigenvalues, and stable with complex eigenvalues. If the eigenvalues are real, then the system is critically damped; for complex eigenvalues, solutions near the equilibrium are oscillating. Based on experimental data, we found that in principle real and complex behaviors may occur in human arm movements. The experiments support the analytical predictions. Furthermore, in agreement with the simulations, we found differences in the experimental results among the subjects. The results of this study support the assumption that arm movements around an equilibrium point may be self-stabilized without sensory feedback or motor control, based only on mechanical properties of musculoskeletal systems.
An exoskeleton is a wearable robot with joints and links corresponding to those of the human body. With applications in rehabilitation medicine, virtual reality simulation, and teleoperation, exoskeletons offer benefits for both disabled and healthy populations. Analytical and experimental approaches were used to develop, integrate, and study a powered exoskeleton for the upper limb and its application as an assistive device. The kinematic and dynamic dataset of the upper limb during daily living activities was one among several factors guiding the development of an anthropomorphic, seven degree-of-freedom, powered arm exoskeleton. Additional design inputs include anatomical and physiological considerations, workspace analyses, and upper limb joint ranges of motion. Proximal placement of motors and distal placement of cable-pulley reductions were incorporated into the design, leading to low inertia, high-stiffness links, and back-drivable transmissions with zero backlash. The design enables full glenohumeral, elbow, and wrist joint functionality. Establishing the human-machine interface at the neural level was facilitated by the development of a Hill-based muscle model (myoprocessor) that enables intuitive interaction between the operator and the wearable robot. Potential applications of the exoskeleton as a wearable robot include (i) an assistive (orthotic) device for human power amplifications, (ii) a therapeutic and diagnostics device for physiotherapy, (iii) a haptic device in virtual reality simulation, and (iv) a master device for teleoperation.