World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE EFFECT OF In0.1Ga0.9As UNDERLYING LAYER ON THE STRUCTURAL PROPERTIES OF SELF-ASSEMBLED In0.5Ga0.5As QUANTUM DOTS

    https://doi.org/10.1142/S1793292011002482Cited by:2 (Source: Crossref)

    The effect of a thin In0.1Ga0.9As underlying layer on the structural properties of single layer In0.5Ga0.5As quantum dots (QDs) was investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and high-resolution X-ray diffraction (HR-XRD) characterization. The size of dots formed on the surface is uniform but the density increases with the addition of In0.1Ga0.9As underlying between In0.5Ga0.5As QDs and GaAs buffer layer. This is consistent with the TEM characterization. The existence of thin underlying layer has caused the dots to have different crystal orientation as shown in TEM characterization. From the HR-XRD characterization, broad peak of In0.1Ga0.9As underlying layer and QDs has been observed. The wider width of the layer peak than the expected one has been attributed to the strain-relaxation-induced defects. The growth of a thin In0.1Ga0.9As underlying layer in the In0.5Ga0.5As/GaAs structures strongly affects the structural properties, which was also believed to influence the optical properties of QDs.