World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on Single Cell Analysis (Part II) — Guest Editors: Shuhua Yue, Xuantao Su, Minbiao Ji, Fu Wang and Xunbin Wei – Research ArticlesOpen Access

SOFFLFM: Super-resolution optical fluctuation Fourier light-field microscopy

    https://doi.org/10.1142/S1793545822440072Cited by:1 (Source: Crossref)

    Fourier light-field microscopy (FLFM) uses a microlens array (MLA) to segment the Fourier plane of the microscopic objective lens to generate multiple two-dimensional perspective views, thereby reconstructing the three-dimensional (3D) structure of the sample using 3D deconvolution calculation without scanning. However, the resolution of FLFM is still limited by diffraction, and furthermore, it is dependent on the aperture division. In order to improve its resolution, a super-resolution optical fluctuation Fourier light-field microscopy (SOFFLFM) was proposed here, in which the super-resolution optical fluctuation imaging (SOFI) with the ability of super-resolution was introduced into FLFM. SOFFLFM uses higher-order cumulants statistical analysis on an image sequence collected by FLFM, and then carries out 3D deconvolution calculation to reconstruct the 3D structure of the sample. The theoretical basis of SOFFLFM on improving resolution was explained and then verified with the simulations. Simulation results demonstrated that SOFFLFM improved the lateral and axial resolution by more than 2 and 2 times in the second- and fourth-order accumulations, compared with that of FLFM.

    References

    • 1. M. Levoy, R. Ng, A. Adams, M. Footer, M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924–934 (2006). Crossref, Web of ScienceGoogle Scholar
    • 2. T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L. Weilguny, F. M. Traub, M. Molodtsov, A. Vaziri, “Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy,” Nat. Meth. 14, 811–818 (2017). Crossref, Web of ScienceGoogle Scholar
    • 3. M. A. Taylor, T. Nöbauer, A. Pernia-Andrade, F. Schlumm, A. Vaziri, “Brain-wide 3D light-field imaging of neuronal activity with speckle-enhanced resolution,” Optica 5, 345–353 (2018). Crossref, Web of ScienceGoogle Scholar
    • 4. H. Li, C. Guo, D. Kim-Holzapfel, W. Li, Y. Altshuller, B. Schroeder, W. Liu, Y. Meng, J. B. French, K.-I. Takamaru, M. A. Frohman, S. Jia, “Fast, volumetric live-cell imaging using high-resolution light-field microscopy,” Biomed. Opt. Exp. 10, 29–49 (2019). Crossref, Web of ScienceGoogle Scholar
    • 5. B. Gao, L. Gao, F. Wang, “Single-cell volumetric imaging with light field microscopy: Advances in systems and algorithms,” J. Innov. Opt. Heal. Sci., 2230008 (2022). Web of ScienceGoogle Scholar
    • 6. C. Guo, W. Liu, X. Hua, H. Li, S. Jia, “Fourier light-field microscopy,” Opt. Exp. 27, 25573–25594 (2019). Crossref, Web of ScienceGoogle Scholar
    • 7. C. Guo, T. Urner, S. Jia, “3D light-field endoscopic imaging using a GRIN lens array,” Appl. Phys. Lett. 116, 101105 (2020). Crossref, Web of ScienceGoogle Scholar
    • 8. X. Hua, W. Liu, S. Jia, “High-resolution Fourier light-field microscopy for volumetric multi-color live-cell imaging,” Optica 8, 614–620 (2021). Crossref, Web of ScienceGoogle Scholar
    • 9. W. H. Liu, S. Jia, “wFLFM: Enhancing the resolution of Fourier light-field microscopy using a hybrid wide-field image,” Appl. Phys. Exp. 14, 012007 (2021). Crossref, Web of ScienceGoogle Scholar
    • 10. R. R. Sims, S. A. Rehman, M. O. Lenz, S. I. Benaissa, E. Bruggeman, A. Clark, E. W. Sanders, A. Ponjavic, L. Muresan, S. F. Lee, K. O’Holleran, “Single molecule light field microscopy,” Optica 7, 1065–1072 (2020). Crossref, Web of ScienceGoogle Scholar
    • 11. H. F. Ruan, J. Q. Yu, Y. Y. Wu, X. J. Tang, J. H. Yuan, X. H. Fang, “Fusion of clathrin and caveolae endocytic vesicles revealed by line-switching dual-color STED microscopy,” J. Innov. Opt. Heal. Sci. 14, 2150017 (2021). Link, Web of ScienceGoogle Scholar
    • 12. M. T. Wang, L. Wang, X. M. Zheng, J. Zhou, J. J. Chen, Y. J. Zeng, J. L. Qu, Y. H. Shao, B. Z. Gao, “Nonlinear scanning structured illumination microscopy based on nonsinusoidal modulation,” J. Innov. Opt. Heal. Sci. 14, 2142002 (2021). Link, Web of ScienceGoogle Scholar
    • 13. L. Y. Xu, Y. W. Zhang, S. Lang, H. W. Wang, H. J. Hu, J. K. Wang, Y. Gong, “Structured illumination microscopy based on asymmetric three-beam interference,” J. Innov. Opt. Heal. Sci. 14, 2050027 (2021). Link, Web of ScienceGoogle Scholar
    • 14. K. Zhao, X. Xu, W. Ren, D. Jin, P. Xi, “Two-photon MINFLUX with doubled localization precision,” eLight 2, 5 (2022). CrossrefGoogle Scholar
    • 15. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. USA 106, 22287–22292 (2009). Crossref, Web of ScienceGoogle Scholar
    • 16. M. Gu, Advanced Optical Imaging Theory, Springer (2000). CrossrefGoogle Scholar
    • 17. T. Dertinger, M. Heilemann, R. Vogel, M. Sauer, S. Weiss, “Superresolution optical fluctuation imaging with organic dyes,” Angew. Chem. Int. Ed. 49, 9441–9443 (2010). Crossref, Web of ScienceGoogle Scholar
    • 18. Z. P. Zeng, X. Z. Chen, H. N. Wang, N. Huang, C. Y. Shan, H. Zhang, J. L. Teng, P. Xi, “Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging,” Sci. Rep. 5, 8359 (2015). Crossref, Web of ScienceGoogle Scholar
    • 19. A. Girsault, T. Lukes, A. Sharipov, S. Geissbuehler, M. Leutenegger, W. Vandenberg, P. Dedecker, J. Hofkens, T. Lasser, “SOFI simulation tool: A software package for simulating and testing super-resolution optical fluctuation imaging,” Plos One 11(9), e0161602 (2016). Crossref, Web of ScienceGoogle Scholar