Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The commonly accepted "tower of blocks" model for vertebrate spine mechanics is only useful when modeling a perfectly balanced, upright, immobile spine. Using that model, in any other position than perfectly upright, the forces generated will tear muscle, crush bone and exhaust energy. A new model of the spine uses a tensegrity-truss system that will model the spine right side up, upside-down or in any position, static or dynamic. In a tensegrity-truss model, the loads distribute through the system only in tension or compression. As in all truss systems, there are no levers and no moments at the joints. The model behaves non-linearly and is energy efficient. Unlike a tower of blocks, it is independent of gravity and functions equally well on land, at sea, in the air or in space and models the spines of fish and fowl, bird and beast.
In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell's aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events.
In this research, we propose an "Athlete Robot" which is compatible with a biomechanical structure of a human. In our work, pneumatic muscle is used for the actuator. We also provide a method to describe the properties of musculoskeletal leg with "Convex Polygon of Forces". In the experiment, we observed sway of the center of gravity similar to a human during bipedal stance. Our results show that the robot which has well-designed leg can land softly from one meter drop by exploiting the anti-gravity muscles and its compliance. In addition, by using preset stiffness of the musculoskeletal leg, we can control the direction of the bouncing predictively. The musculoskeletal robot helps to illuminate design principles of the robot which can move quickly and skillfully in the real world.
Technological advances in robotic hardware and software have enabled powered exoskeletons to move from science fiction to the real world. The objective of this article is to emphasize two main points for future research. First, the design of future devices could be improved by exploiting biomechanical principles of animal locomotion. Two goals in exoskeleton research could particularly benefit from additional physiological perspective: (i) reduction in the metabolic energy expenditure of the user while wearing the device, and (ii) minimization of the power requirements for actuating the exoskeleton. Second, a reciprocal potential exists for robotic exoskeletons to advance our understanding of human locomotor physiology. Experimental data from humans walking and running with robotic exoskeletons could provide important insight into the metabolic cost of locomotion that is impossible to gain with other methods. Given the mutual benefits of collaboration, it is imperative that engineers and physiologists work together in future studies on robotic exoskeletons for human locomotion.
The main aim of this paper is to propose a new boundary element algorithm for describing thermomechanical interactions in anisotropic soft tissues. The governing equations are studied based on the dual-phase lag bioheat transfer and Biot’s theory. Due to the advantages of convolution quadrature boundary element method (CQBEM), such as low CPU usage, low memory usage and suitability for treatment of soft tissues that have complex shapes, it is a versatile and powerful method for modeling of bioheat distribution in anisotropic soft tissues and the related deformation. The resulting linear systems for bioheat and mechanical equations are solved by Transpose-free quasi-minimal residual (TFQMR) solver with a dual-threshold incomplete LU factorization technique (ILUT) preconditioner that reduces the iterations number and total CPU time. Numerical results demonstrate the validity, efficiency and accuracy of the proposed algorithm and technique.
Bladder control problems affect both men and women and range from an overactive bladder, to urinary incontinence, to bladder obstruction and cancer. These disorders affect more than 200 million people worldwide. Loss of bladder function significantly affects the quality of life, both physically and psychologically, and also has a large impact on the healthcare system, i.e., the incurring costs related to diagnosis, treatment and medical/nursing care. Improvements in diagnostic capabilities and disease management are essential to improve patient care and quality of life and reduce the economic burden associated with bladder disorders. This paper summarizes some of the key contributions to understanding the mechanics of the bladder ranging from work conducted in the 1970s through the present time with a focus on material testing and theoretical modeling. Advancements have been made in these areas and a significant contribution to these changes was related to technological improvements.
In this study, we investigated to which extent Hill-type muscle models can explain the electro-mechanical delay (EMD). The EMD is a phenomenon that has been well examined in muscle experiments. The EMD is the time lag between a change in muscle stimulation and the subsequent measurable change in muscle force. A variety of processes as, e.g., signal conduction and interaction of contractile and elastic muscle structures contribute to the EMD. The relative contributions of the particular processes have not been fully unveiled so far. Thereto, we simulated isometric muscle contractions using two Hill-type muscle models. Their parameters were extracted from experiments on the cat soleus muscle. In agreement with literature data, predicted EMD values depend on muscle-tendon complex (MTC) length and increase when reducing MTC lengths. The highest EMD values (28 and 27 ms) occur at the lowest MTC length examined (78% of optimal length). Above optimal MTC length, we find EMD saturation (2 ms) in one model. In the other model, the EMD slightly re-increases up to 9 ms at the highest length examined (113% of optimal length). The EMD values predicted by the two models were then compared to EMD values found in the same experiments from which the muscle parameters were extracted. At optimal MTC length, the EMD values, mapping ion release and visco-elastic interactions, predicted by both models (3.5 and 5.5 ms) just partly account for the measured value (15.8 ms). The biggest share (about 9 ms) of the remaining 11 ms can be attributed to signal conduction along the nerve and on the muscle surface. Further potential sources of delayed force generation are discussed.
Ballistic injury refers to the interaction of a projectile and the human body, resulting in penetration or blunt trauma. In order to consider both consequences, a hydrodynamic elastoplastic constitutive law was implemented in a numerical FE model of the human torso to simulate soft tissues behavior and to evaluate their injury risk. This law, derived from 20% ballistic gelatin, was proven to be very efficient and biofidelic for penetrating ballistic simulation in soft tissues at very high velocity. In this study, the ability of the hydrodynamic law to simulate blunt ballistic trauma is evaluated by the replication of Bir et al.’s (2004) experiments, which is a reference test of the literature for nonpenetrating ballistic impact. Lung injury criteria were also investigated through the Bir et al.’s experiments numerical replication. Human responses were evaluated in terms of mechanical parameters, which can be global (acceleration of the body, viscous criteria and impact force) or local (stress, pressure and displacement). Output results were found to be in experimental corridors developed by Bir et al., and the maximum pressure combined with the duration of the peak of pressure in the lungs seems to be a good predictor for lung injury.
The use of finite element models has gained popularity in the field of foot and footwear biomechanics to predict the stress–strain distribution and the treatment effectiveness of therapeutic insoles for pathological foot conditions. However, a comprehensive evaluation of mesh quality is often ignored, meanwhile no golden standard exists for the mesh density and selection of element size at an acceptable accuracy. Here, we make a convergence test and established anatomically-realistic foot models at different mesh densities. The study compared the discrepancy in output variables to the changes of element type and mesh density under barefoot and footwear conditions with compressive and shear loads, which are commonly encountered in foot and footwear biomechanics simulations. For a range of loading conditions simulated in 125 finite element models, the peak plantar pressure consistently converged with optimal mesh size determined at 2.5mm. The convergence variable of principal strains and stress tensors, however, varies significantly. The max von-Mises stress showed strong sensitive behavior to the changes of the mesh density. The pattern for contact pressure distribution became less accurate when the element sizes increase to 6.0mm; in particular, the locations of the pressure peak do not show remarkable changes, but the size of the area of contact still changes. The current study could offer a general guideline when generating a reasonable accurate finite element models for the analysis of plantar pressure distributions and stress/strain states employed for foot and footwear biomechanics evaluations.
The purposes of the present study were to (1) investigate the effects of the arm movement and initial knee joint angle employed in standing long jump by the ground reaction force analysis and three-dimensional motion analysis; and (2) investigate how the jump performance of the female gender related to the body configuration. Thirty-four healthy adult females performed standing long jump on a force platform with full effort. Body segment and joint angles were analyzed by three-dimensional motion analysis system. Using kinetic and kinematic data, the trajectories on mass center of body, knee joint angle, magnitude of peak takeoff force, and impulse generation in preparing phase were calculated. Average standing long jump performances with free arm motion were +1.5 times above performance with restricted arm motion in both knee initial angles. The performances with knee 90° initial flexion were +1.2 times above performance with knee 45° initial flexion in free and restricted arm motions. Judging by trajectories of the center mass of body (COM), free arm motion improves jump distance by anterior displacement of the COM in starting position. The takeoff velocity with 90° knee initial angle was as much as 11% higher than in with 45° knee initial angle. However, the takeoff angles on the COM trajectory showed no significant differences between each other. It was found that starting jump from 90° bend knee relatively extended the time that the force is applied by the leg muscles. To compare the body configurations and the jumping scores, there were no significant correlations between jump scores and anthropometry data. The greater muscle mass or longer leg did not correlated well with the superior jumping performance.
Typically, active muscle force is calculated by subtracting measured passive force from measured total force for corresponding whole muscle lengths (standard method). From a mechanical point of view, this requires a parallel elastic component (PEC) that is arranged in parallel to both the series elastic component (SEC) and the contractile component (CC). From a morphological point of view, however, the PEC should be rather in parallel to the CC, and both in series to the SEC (model [CC]). In this study, we investigated the differences in active muscle force estimated with these two different approaches and their impact on the interpretation of experiments. We measured passive forces without stimulation and total forces during supramaximal stimulation of six cat soleus muscles in end-held isometric contractions from lengths near active insufficiency to lengths close to inducing stretch damage. The active forces estimated with model [CC] reach about 10% higher maximum isometric forces and reveal about 10% longer optimal lengths of the CC compared to the standard method. Model choice affects the interpretation of the physiological working range and residual force enhancement. The active force-length relationships of the contractile component determined with model [CC] agree better with the theoretical sarcomere force-length relationship.
The main goal of the present study is to analyze and characterize the behavior of the middle ear, when a total ossicular replacement prosthesis (TORP) is used in the ossicular chain, in order to troubleshoot conductive hearing loss. Using a finite element model (FEM), a dynamic study of the middle ear was made. The displacement values were obtained at the umbo and stapes footplate, for a sound pressure level of 80 dB sound pressure level (SPL) applied at the tympanic membrane, when a cartilage in membrane-prosthesis interface of different diameters and thicknesses was used. The results were compared with the healthy middle ear model. The usage of this model aims to achieve a set of techniques that promotes the best possible performance of prosthesis in the middle ear. The present study allows to conclude that the rehabilitation of the middle ear with TORP can lead to the best results when used with 4 mm diameter cartilages, with a thin thickness of 0.3 mm.
Complication rates of anterior cruciate ligament reconstruction (ACL-R) were reported to be around 15%. Although it is a very common arthroscopic surgery with good outcomes, breakage and migration of fixators are still possible to occur due to stability issue. One of the factors that affects the mechanical stability of fixators is its length. Therefore, the aim of this paper is to analyze the biomechanical effects of different lengths of fixators (cross-pin technique) towards the stabilities of the knee joint after ACL-R. Finite element analyses of knee joint with DST grafts and fixators were carried out. Mimics and 3-Matic were used in the development of knee joint models, while the grafts and fixators were designed by using SolidWorks software. All models were remeshed in the 3-Matic and numerical analysis was performed via MSC.Marc Mentat software. A 100 N anterior tibial load was applied onto the tibia to simulate the anterior drawer test after the surgery and proximal femur was fixed at all degrees of freedom. Based on the findings, cross-pin with 40mm in length provided the most favorable option for better treatment of ACL-R, where it could promote osseointegration and preventing fracture.
Biomechanics research shows that the ability of the human locomotor system depends on the functionality of a highly compliant motor system that enables a variety of different motions (such as walking and running) and control paradigms (such as flexible combination of feedforward and feedback controls strategies) and reliance on stabilizing properties of compliant gaits. As a new approach of transferring this knowledge into a humanoid robot, the design and implementation of the first of a planned series of biologically inspired, compliant, and musculoskeletal robots is presented in this paper. Its three-segmented legs are actuated by compliant mono- and biarticular structures, which mimic the main nine human leg muscle groups, by applying series elastic actuation consisting of cables and springs in combination with electrical actuators. By means of this platform, we aim to transfer versatile human locomotion abilities, namely running and later on walking, into one humanoid robot design. First experimental results for passive rebound, as well as push-off with active knee and ankle joints, and synchronous and alternate hopping are described and discussed. BioBiped1 will serve for further evaluation of the validity of biomechanical concepts for humanoid locomotion.
The aim of this paper is trying to propose an efficient method of inverse kinematics and motion generation for redundant humanoid robot arm based on the intrinsic principles of human arm motion. The intrinsic principle analysis takes into account both the skeletal kinematics and muscle strength properties. Firstly, this work analyzed the kinematic redundancy problem of a human arm. By analyzing the biological feature of a human arm, the kinematic redundancy boils down to the uncertainty of elbow position. Secondly, because the muscle’s kinematic and strength properties are critical for simulating biometric motion authentically, the muscle strength property was introduced as the criterion for configuration identification and motion generation. Three types of limb configuration, dog walking, gecko climbing, and human walking limb configuration were analyzed, and two geometrical configuration identification rules were deduced to generate biomimetic motion for humanoid robotic arms. By comparing the proposed method with other five IK methods, the proposed method significantly deduced the computing time. Finally, the configuration identification rules were used to generate motions for a 7-DoF humanoid robotic arm. The results showed that the biological rules can generate biomimetic, smooth arm motions for a redundant humanoid robotic arm.
With the development of optical coherence tomography, the application optical coherence elastography (OCE) has gained more and more attention in biomechanics for its unique features including micron-scale resolution, real-time processing, and non-invasive imaging. In this review, one group of OCE techniques, namely dynamic OCE, are introduced and discussed including external dynamic OCE mapping and imaging of ex vivo breast tumor, external dynamic OCE measurement of in vivo human skin, and internal dynamic OCE including acoustomotive OCE and magnetomotive OCE. These techniques overcame some of the major drawbacks of traditional static OCE, and broadened the OCE application fields. Driven by scientific needs to engineer new quantitative methods that utilize the high micron-scale resolution achievable with optics, results of biomechanical properties were obtained from biological tissues. The results suggest potential diagnostic and therapeutic clinical applications. Results from these studies also help our understanding of the relationship between biomechanical variations and functional tissue changes in biological systems.
Introduction: To identify the strongest peak load resistance among four mallet finger fracture fixation methods (Kirschner wire, pull-out wire, tension-band wiring and the JuggerKnot™ (Biomet) soft anchor fixation).
Methods: Fixation techniques were assigned among 24 specimens from six cadaveric human hands in a randomized block fashion. Peak load resistance was tested at 30°, 45° and 60° of flexion of the distal interphalangeal joint.
Results: The mean peak load of tension-band wiring was 67.8 N at 60° of flexion which was most superior. The JuggerKnot™ fixation had mean peak loads of 13.35 N (30°), 22.51 N (45°) and 32.96 N (60°). No complications of implant failure or fragmentation of the dorsal fragment was noted.
Conclusions: Tension-band wiring was the strongest fixation method but was most prominent on the skin surface as seen in three specimens. The JuggerKnot™ soft anchor fixation had similar peak load resistance as k-wire fixation and pull-out wiring.
This work investigates the effect of eardrum perforations and myringosclerosis in the mechanical behavior of the tympano-ossicular chain. A 3D model for the tympano-ossicular chain was created and different numerical simulations were made, using the finite element method. For the eardrum perforations, three different calibers of perforated eardrums were simulated. For the micro perforation (0.6 mm of diameter) no differences were observed between the perforated and normal eardrum. For the numerical simulation of the eardrum with the largest perforation caliber, small displacements were obtained in the stapes footplate, when compared with the model representative of normal ossicular-chain, at low frequencies, which is related with major hearing loss in this frequency range. For the numerical simulations of myringosclerosis, the larger differences in the displacement field between the normal and modified model were obtained in the umbo. When observing the results in the stapes footplate, there were no significant differences between the two models, which is in accordance to the clinical data. When simulating an eardrum perforation along with myringosclerosis, there is a decrease in the displacements, both from the umbo and the central part of the stapes footplate, often associated with a pronounced hearing loss. It could be concluded that the reduced displacement of the stapes footplate may be related to a greater hearing loss.
Wearable lower limb exoskeleton has comprehensive applications such as load-carrying augmentation, walking assistance, and rehabilitation training by using many active actuators in the joints to reduce the metabolic cost generally. The traditional fully actuated exoskeleton is bulky and requires large energy consumption, and the passive exoskeleton is difficult to provide effective power assistance. To achieve both small number of actuators and good assisting performance, this paper proposes a cable-pulley underactuated principle-based lower limb exoskeleton. The exoskeleton dynamics was modeled and the human-exoskeleton hybrid model was analyzed via ADAMS and LifeMOD to provide an evaluation method for power assistance. By exploiting the control strategy and utilizing the synergies of torque and power assistance, the hip joint and the knee joint can be actuated by a single cable simultaneously. Moreover, the human-exoskeleton co-simulation method was utilized to verify the assisting performance and control effect. In this simulation, the upper toque peak and power required by human are obviously reduced by power assistance and the joint angle curves without exoskeleton are in accordance with the joint angle curves with exoskeleton almost. In conclusion, the designed exoskeleton is compatible with human motion and feasible to provide effective power assistance in load-carrying walking.
Little is known about why and how biomechanics govern the hypothesis that three-Lag-Screw (3LS) fixation is a preferred therapeutic technique. A series models of surgical internal-fixation for femoral neck fractures of Pauwells-II will be constructed by an innovative approach of finite element so as to determine the most stable fixation by comparison of their biomechanical performance. Seventeen sets of CT scanned femora were imported onto Mimics extracting 3D models; these specimens were transferred to Geomagic Studio for a simulative osteotomy and kyrtograph; then, they underwent UG to fit simulative solid models; three sorts of internal fixators were expressed virtually by Pro-Engineer. Processed by Hypermesh, all compartments were assembled onto three systems actually as “Dynamic hip screw (DHS), 3LS and DHS+LS”. Eventually, numerical models of Finite Elemental Analysis (FEA) were exported to AnSys for solution. Three models for fixtures of Pauwells-II were established, validated and analyzed with the following findings: Femoral-shaft stress for (3LS) is the least; Internal-fixator stress (MPa) for ; Integral stress (MPa) for ; displacement of femoral head (mm) for a(DHS+LS) = 0.735; displacement of femoral shaft (mm) for ; and displacement of fixators for . Mechanical comparisons for other femoral parks are insignificantly different, and these data can be abstracted as follows: the stress of 3LS-system was checked to be the least, and an interfragmentary displacement of DHS+LS assemblages was assessed to be the least”. A 3LS-system should be recommended to clinically optimize a Pauwells-II facture; if treated by this therapeutic fixation, breakage of fixators or secondary fracture is supposed to occur rarely. The strength of this study is that it was performed by a computer-aided simulation, allowing for design of a preoperative strategy that could provide acute correction and decrease procedure time, without harming to humans or animals.