Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    OPTICAL PROPERTIES OF CHEMICALLY PREPARED CdS QUANTUM DOTS IN POLYVINYL ALCOHOL

    Excitonic effects are observed in the optical absorption and photoluminescence of strongly confined CdS quantum dots embedded in the polymer matrix. CdS nanoparticles of different crystallite sizes have been prepared by chemical route with polymer as a host material. The CdS nanocomposite film was made up of particle smaller than 5 nm and shows a composite band gap up to 3.2 eV, whereas the band gap for bulk hexagonal CdS is about 2.42 eV. Photoluminescence spectra show a strong emission band corresponding to electron–hole recombination and a weak band due to defect emission. The decrease of particle size was monitored from the U-V visible absorption measurement as well as photoluminescence, which suffered blue shift with decrease in particle size. The particle size and surface morphology were also analyzed by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM).

  • articleNo Access

    INVESTIGATION OF THE DEFECT STRUCTURE, OPTICAL AND EPR SPECTRA FOR CdS: Ti2+ AND CdSe: Ti2+ CRYSTAL

    The optical spectral band positions and spin-Hamiltonian parameters (g factors g, g and zero-field splitting D) of CdS: Ti2+ and CdSe: Ti2+ crystals are calculated from the complete diagonalizaion (of energy matrix) method based on a two-spin-orbit parameter model for 3d2 ions in trigonal symmetry. In the model, both the contribution to spin-Hamiltonian parameters due to the spin-orbit parameter of central 3d2 ions and that of ligand ions are included. The crystal field parameters used in the calculations are obtained from the superposition model which enables correlation of the optical and EPR spectral data with the defect structure of the studied paramagnetic impurity centers in crystals. From the calculations, the defect structures of Ti2+ centers in CdS: Ti2+ and CdSe: Ti2+ are acquired, the signs of zero-field splittings D are suggested, and the optical band positions and spin-Hamiltonian parameters are explained. The results are discussed.

  • articleNo Access

    AC CONDUCTIVITY AND DIELECTRIC PROPERTIES OF PULSED LASER DEPOSITED CdS THIN FILMS

    Cadmium Sulphide (CdS) thin films with different thicknesses were prepared by pulsed laser deposition technique using Nd:YAG laser with wavelength 1064 nm. AC electrical conductivity was studied in the frequency range 100–1000 KHz as a function of temperature. AC conductivity increased with increasing the frequency. The values of the activation energy of the AC conduction were calculated for CdS thin films of different thicknesses at various frequencies. The dielectric constant and dielectric loss were investigated as a function of temperature at different frequencies.

  • articleNo Access

    Crystalline phase transformation of colloidal cadmium sulfide nanocrystals

    In this paper, we give a microscopic view concerning influence of the growth conditions on the physical properties of nanocrystals (NCs) thin films made of CdS, prepared using chemical bath deposition CBD technique. We show a crystalline phase transformation of CdS NCs from hexagonal wurtzite (W) structure to cubic zincblende (ZB) when the growth conditions change, particularly the solution pH values. This effect was confirmed using X-ray diffraction (XRD), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) measurements. The optical absorption spectra allow calculation of the bandgap value, Eg, where significant increase 200 meV in the CdS bandgap when transforming from Hexagonal to Cubic phase was found.

  • articleNo Access

    Quantum confinement effects of formation energies and vibrational properties of CdS clusters: A DFT study

    Formation energies of cadmium sulfide clusters are calculated with the help of density functional theory. The investigated structures include clusters that represent the CdS three main phases, wurtzite, zincblende and rock-salt. The investigation includes electronic, vibrational and thermal properties. CdS clusters are represented by wurtzoids, diamondoids and cuboids for the three phases, wurtzite, zincblende and rock-salt, respectively. The energy gap of the largest investigated molecules approaches that of bulk experimental 2.42 eV. The calculated longitudinal optical (LO) vibrational mode is 304.2 cm1 which is in good agreement with the experimental bulk value of 305 cm1. To calculate Gibbs free energy, enthalpy and entropy of formation for the clusters, we redefined these quantities so that they represent the difference between the CdS formation energy and their constitutes Cd and S clusters energy. The calculated Gibbs free energy of formation, enthalpy and entropy of the investigated clusters approach that of bulk. Wurtzoids are more stable than diamondoids and cuboids with the release of more heat as deduced from their cluster Gibbs energy and enthalpy of formation. The entropy of clusters is dependent on the size of the cluster. The present method draws a relation between known solid state phases and small cluster calculations.

  • articleNo Access

    Influence of thermal treatment on photoluminescent properties of PP/PbS/CdS nanocomposites

    This paper deals with an investigation on the photoluminescence (PL) properties of PP+PbS/CdS nanocomposites at different temperatures (100C, 120C and 140C) under vacuum. The optical bandgap was calculated on the basis of the spectra of UV absorption and it was shown that after thermal treatment the nanocomposites optical bandgap changed. The change has been attributed to the modification of the upper molecular structure of the polymer matrix due to the thermal process. The luminescence spectra of nanocomposites before and after thermal treatment at different temperatures (100C, 120C and 140C) under vacuum were also measured and discussed. A very high luminescence intensity was observed after thermal treatment at 100C temperature. This was attributed to the luminescent centers’ increase and the optimal structure formation.

  • articleNo Access

    Effect of temperature on the current transfer mechanism in the reverse I–V characteristics of the n-CdS/i-CdSxTe1x/p-CdTe heterostructure

    In this work, we study the influence of the temperature on the mechanism of current transfer in the reverse branch of the current–voltage (I–V) characteristics of n-CdS/p-CdTe heterostructures. The study of the heterostructure, using the technique of on energy-dispersive X-ray analysis, showed that a layer of CdSxTe1x is formed at the boundary of the heterojunction with a varying composition, being equal x0.48 from the side of CdS and x0.02 from the CdTe side. In the studied range of the temperatures and bias voltage, the current-voltage characteristics are described well by a power law J=AVα, where the exponent α changes with the temperature and voltage. Under the influence of the temperature and charge carrier concentration, the mechanism of current transfer in the structure changes from exclusion (α0.5) to ohmic (α1), and then goes to injection (α2). The inhomogeneous intermediate CdSxTe1xi-layer at the boundary of the n-CdS/p-CdTe heterostructure is characterized by the presence of metastable states that rearrange at high temperatures and certain charge carrier concentrations. As a result of this, the exclusion slows down and electrons are injected from the rear molybdenum contact.

  • articleNo Access

    PREPARATION OF CUBE-SHAPED CdS NANOPARTICLES BY SONOCHEMICAL METHOD

    Cube-shaped CdS nanoparticles have been successfully prepared by a sonochemical method in an oil-in-water microemulsion. The product was characterized by using techniques including X-ray powder diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray analysis and UV-visible absorption spectroscopy. This microemulsion system in the presence of high-intensity ultrasound irradiation provides special conditions for the nucleation and growth of the CdS nanoparticles.

  • articleNo Access

    A STUDY ON A NEW SYNTHETIC METHOD OF CdS AND CdSe NANOPARTICLES AND THEIR ORGANIC/INORGANIC NANOCOMPOSITE

    Materials such as CdS and CdSe inorganic nanoparticles have photoluminescence. Sodium oleate has been used as effective stabilizers for the synthesis of CdS and CdSe nanoparticles in water by autoclave method. Photoluminescence of CdS and CdSe with particle size of 5–14 nm showed λmax at 520 nm and 600 nm, respectively, when were excited at 365 nm. These nanoparticles doped into the PVA resulted in the organic/inorganic films (PVA/CdS, CdSe). Photoluminescence, X-ray diffraction and transmission electron microscopy were employed for their characterization.

  • articleNo Access

    EFFECTS OF EXCESSIVE REACTANTS ON THE PROPERTIES OF CADMIUM SULFIDE THIN FILMS PREPARED BY CHEMICAL BATH DEPOSITION

    Cadmium sulfide nanoparticles were synthesized and grown on glass substrates by chemical bath deposition. The method involves the preparation of aqueous solutions containing cadmium chloride (CdCl2) and thiourea [CS(NH2)2] as source materials for cadmium and sulfur components, respectively. Ammonium hydroxide (NH4OH)–ammonium chloride (NH4Cl) solution was used as a complexing agent in this study. The hexagonal and cubic crystal structure of as-deposited CdS films, determined by X-ray diffraction (XRD), is shown. The effects of Cd:S ratio variation on the surface morphology and optical properties of CdS films are also reported. The UV-vis transmission spectrum and SEM micrographs indicated that the Cd:S ratio in the aqueous solution had an impact on the band gap as well as the crystallite size and packing density of the CdS particles due to the quantum confinement effect.

  • articleNo Access

    SYNTHESIS AND CHARACTERIZATION OF HEXAMETHYLENE TETRAMINE (HMTA) CAPPED CdS NANOPARTICLES BY HYDROTHERMAL METHOD

    Cadmium sulfide nanoparticles have been synthesized by hydrothermal method using cadmium acetate, thiosemicarbazide, and sodium hydroxide as precursors with hexamethylene tetramine as the surfactant. From the X-ray diffraction analysis, it is observed that synthesized CdS nanoparticles show cubic phase. The presence of HMTA in CdS was confirmed by FT-IR analysis. The bandgap value of CdS nanostructure has been estimated by DRS–UV-Visible spectral analysis. The formation of flower-like nanoclusters was observed using scanning electron microscopy (SEM). The application of CdS nanoparticles in photocatalytic degradation was also studied.

  • articleNo Access

    SYNTHESIS OF NANOCRYSTALLINE CdS QUANTUM DOTS VIA PARAFFIN LIQUID AS SOLVENT AND OLEIC ACID AS THE REACTING MEDIA

    Fluorescent semiconductor nanocrystals have been widely used as fluorescent materials in chemical sensors, biotechnology, medical diagnostics, biological imaging and many other fields. Compared to the conventional organic fluorophores, the inorganic quantum dots (QDs) have many advantages, including broad absorption spectra, narrow emission spectra, good photostability and long fluorescent lifetime after excitation. Here, the high quality CdS QDs were synthesized directly from sulfur and CdO using the paraffin liquid as solvent and the oleic acid as the reacting media. The synthesized CdS QDs with a zinc blende (cubic) crystal structure were proved by X-ray diffraction. HRTEM observation revealed that the CdS QDs were uniform and the average grain size was about 4 nm. The optical properties of the CdS QDs were characterized by using photoluminescence (PL) spectrophotometer and Ultraviolet-visible (UV-Vis) absorption spectrophotometer. The formation mechanism of CdS QDs in the paraffin liquid and oleic acid system was proposed.

  • articleNo Access

    Some Physical Properties of Pure and Cu, Fe-doped CdS Thin Films

    In the present work, Cadmium sulfide (CdS) and CdS doped with copper (Cu) and iron (Fe) metals thin films were deposited on glass slides using chemical bath deposition technique. 1% content of Cu and Fe were used as dopants. The films were prepared at a reaction temperature of approximately 80C and for an hour as the reaction time without any heat treatment. The pure and doped films were diagnosed and examined by several techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and UV-visible spectrometry to study the effect of the doping and the type of dopant material on the surface, structural and optical properties of CdS films. From the results of XRD can be noticed there is no effect for the dopant on the type of crystal structure except small shifting in the position of main peak after doping. The bandgap energy of the Fe-doped CdS films has been found to be lower than that of the undoped films between 2.62 eV and 2.43 eV.

  • articleNo Access

    FORMATION OF II–VI SEMICONDUCTOR NANOCRYSTALS WITH TUNABLE VISIBLE EMISSION IN AQUEOUS SOLUTION PROMOTED BY HYDRAZINE

    Nano01 Dec 2012

    II–VI Semiconductor nanocrystals (NCs) with tunable visible emission, such as CdS, CdSe and CdTe, were synthesized in aqueous solution using thiols as capping molecules. Hydrazine was found to promote the growth of NCs through a special mechanism. In only a few hours, the synthesis process was completed at room temperature. Under moderate conditions, the capping molecules not only changed the growth rate of NCs simply by varying the concentration, but also altered the spectral properties of NCs. The capping molecules with amino groups were propitious to the growth of CdS NCs, whereas the kinetic growth of CdS NCs was more affected by the surface passivation efficiency of NCs than by steric hindrance in the system. The fastest growth of the CdS NCs was achieved when glutathione was used as a capping molecule, while the emission of CdS and CdSe NCs were shown to remain steady and tunable using the same capping molecule. The growth rate of 3-mercaptopropionic acid-capped CdS and CdSe NCs slowed down significantly, while CdTe NCs were obtained with excellent emission properties when capped with the same molecule. Furthermore, our approach will also be useful for the study of the kinetic growth of NCs in aqueous solution.

  • articleNo Access

    HYDROTHERMAL SYNTHESIS AND ENHANCED VISIBLE-LIGHT PHOTOCATALYTIC ACTIVITY OF CdS QUANTUM DOTS SENSITIZED CARBON NANOTUBES (CNTs) NANOCOMPOSITE

    Nano01 Feb 2014

    A new-type photocatalyst of cadmium sulfide carbon nanotubes (CdS/CNTs) was prepared by the hydrothermal method. This as-prepared CdS/CNTs composite photocatalyst was proved to exhibit an excellent photocatalytic activity for degradation of tetracycline (TC). Specially, the 95%-CdS–5%-CNTs composite photocatalyst played the best degradation rate (81.2%) in 60 min under the visible light irradiation. Moreover, this 95%-CdS–5%-CNTs composite photocatalyst possessed great stability and could be used at least four cycles with almost no loss of photocatalytic efficiency. Furthermore, the as-synthesized CdS/CNTs composite photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffused reflectance spectra (UV-Vis), Raman and thermal gravimetry (TG). In addition, the possible mechanism and kinetics of photodegradation of TC with CdS/CNTs photocatalyst was also discussed.

  • articleNo Access

    Microwave-Assisted Fabrication of Recyclable CdS/Fe3O4/rGO Photocatalysts to Improve the Photocatalytic Performance Under Visible Light

    Nano20 Oct 2016

    A unique CdS/Fe3O4/rGO composite photocatalyst is successfully synthesized by the microwave method. It displays promising photocatalytic activity towards the photo-degrading of tetracycline (TC) in aqueous solution, the degradation rate of TC is 69% with adding 0.1g CdS/Fe3O4/rGO photocatalyst into 20mg/L tetracycline for 2h under visible light irradiation. Furthermore, the mechanism was systematically investigated by active species trapping experiment. It can be known that ewas the major active species in the photodegradation process and the possible process of charge transfer for CdS/Fe3O4/rGO was proposed based on the experimental results. The as-prepared samples were carefully evaluated by XRD, TEM, XPS, VSM, PL spectra, Raman spectrometer.

  • articleNo Access

    A Three-Dimensional ZnO/CdS/NiFe Layered Double Hydroxide Photoanode Coupled with a Cu2O Photocathode in a Tandem Cell for Overall Solar Water Splitting

    Nano01 Nov 2019

    An integrated tandem photoelectrochemical (PEC) cell, composed of a three-dimensional (3D) ZnO/CdS/NiFe layered double hydroxide (LDH) core/shell/hierarchical nanowire arrays (NWAs) photoanode and a p-Cu2O photocathode, was designed for unassisted overall solar water splitting in this study. The optical and photoelectrochemical characteristics of ZnO-based photoanodes and Cu2O photocathode were investigated. The results show that ZnO/CdS/NiFe LDH nanostructures offer significantly enhanced performances with a photocurrent density reaching 5.8mAcm2 at 0.9V and an onset potential as early as 0.1V (versus RHE). The enhancement can be attributed to the existence of CdS nanoparticles (NPs) which boosts the light absorption in visible region and enhances charge separation. Moreover, the introduction of NiFe LDH nanoplates, with unique hierarchical mesoporous architecture, promotes electrochemical reactions by providing more active sites as co-catalyst. On the above basis, the ZnO/CdS/NiFe LDH–Cu2O two-electrode tandem cell system was established. At zero bias, the device shows a photocurrent density of 0.4mAcm2 along with the corresponding solar-to-hydrogen (STH) conversion efficiency reaching 0.50%. Our results indicate that the tandem PEC cells consisting of metal–oxide–semiconductor photoelectrodes based on Earth-abundant and low-cost materials hold promising application potential for overall solar water splitting.

  • articleNo Access

    Bi4Ti3O12/CdS Nanocomposites Enhance the Photocatalytic Degradation Performance

    Nano01 Jan 2022

    Semiconductor materials used in the field of photocatalysis have been attracting much attention. Due to the advantages of green, pollution-free and sustainable development of solar energy, it is an ideal strategy to explore excellent semiconductor materials as high light photocatalysts for energy conversion. Herein, Bi4Ti3O12/CdS composites were synthetized by coprecipitation method, which CdS particles selectively deposited on Bi4Ti3O12 nanosheets. The phase structure and optical properties of the samples were characterized by XRD, SEM, N2 adsorption–desorption and UV-visible diffuse spectra (UV-DRS). The results showed that the Bi4Ti3O12/CdS composites had the highest photocatalytic activity against RhB under visible light, and the degradation rate of RhB was 98.8% after 120min of simulated light, 2.14 times that of pure Bi4Ti3O12, and the Bi4Ti3O12/CdS-10wt.% composites also showed good stability. UV-DRS demonstrated that the optical absorption range of the composite extends to visible regions, and photocurrent tests also showed that the composite enhances the separation and migration of photoogenic electron–hole pairs, mainly due to the formation of 2D nanosheets/0D particles heterojunctions between the bronzn CdS of the perovskite BTO and hexagonal fibers. Furthermore, free radical assays confirmed that both O2, h+ and OH have effects in the degradation of RhB, and thus suggested a possible mechanism for the photodegradation process of the Bi4Ti3O12/CdS-10wt.% composite photocatalyst.

  • articleNo Access

    Investigation of Optical and Magnetic Properties of Nanostructured CdS- and Cr-Doped CdS Nanorods Dilute Magnetic Semiconductor

    Nano02 Dec 2022

    Two novel CdS- and Cr-doped CdS nanostructures, including nanoparticles and nanoparticles, were successfully synthesized by solvothermal reaction with hydrazine hydrate (HHA), ethylene glycol (EG), ethylenediamine (EN) and ethanolamine (EA) as mixed solvents in different sulfur and cadmium sources. The structure, morphology and properties of the products were characterized using X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectrometer (EDS) and Vibrating sample magnetometer (VSM), respectively. The morphology of the Cr-doped CdS nanostructures was nanorod, with an average diameter of 70–90nm and lengths of 1–2.5μm. The product was observed to be composed of S, Cd and Cr by EDS. The VSM tests demonstrated that the Cr-doped CdS nanorods had super strong ferromagnetism at room temperature, while pure CdS nanorods were weak ferromagnetism. The results confirmed that the prepared the Cr-doped CdS nanorods had ferromagnetism at room temperature, and the saturation magnetization Ms was approximately 9.125 (103emu/g), the coercivity of Hc was approximately 139.22Oe.

  • articleNo Access

    Synthesis of TpTt/CdS Nanocomposite Structures for Methylene Blue Catalytic Degradation

    Nano23 Jun 2023

    The advancement of technology has resulted in severe issues in the natural environment, notably organic water contamination that poses a significant threat to living organisms. To mitigate such problems, various technological solutions have been developed to treat water pollution. The emergence of photocatalytic semiconductor technology has enabled the utilization of numerous novel semiconductor composites for pollution control due to their high efficacy and eco-friendliness. In this paper, TpTt/CdS composites were produced via a simple two-step process, and the resulting samples were characterized using X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, ultraviolet (UV)–visible and photodegradation experiments using methylene blue to simulate organic pollutants. The experimental findings reveal that the composite structure system enhances the radiation absorption capacity of CdS in the UV range, as well as the adsorption capability of organic pollutants. This introduces a fresh concept for modifying semiconductor composite structures and highlights the considerable potential of CdS in degrading organic contaminants.