This study investigates the mechanical, fatigue, water absorption, and flammability properties of polyethylene terephthalate (PET) core-pineapple fiber sandwich composites reinforced with silane-treated neem fruit husk (NFH) biosilica additives. The novel approach includes modifying the fiber’s surface and incorporating biosilica to enhance environmental resistance. The composites were prepared using a hand layup method, followed by silane treatment of the biosilica, pineapple fiber, PET core and vinyl ester resin. Subsequently, to evaluate environmental impacts on composite’s performance, sandwich composites were subjected to temperature aging at 40∘C and 60∘C in a hot oven for 30 days and warm water aging at the same temperatures in tap water with pH 7.4. According to the results, adding 1%, 3%, and 5 vol.% silane-treated biosilica significantly improved the mechanical properties. The composite with 3% biosilica (L2) showed a tensile strength of 120.8MPa, flexural strength of 194.4MPa, compression strength of 182.4MPa, rail shear strength of 20.21MPa, ILSS of 23.14MPa, hardness of 85 Shore-D, and Izod impact strength of 6.56 J. Even under temperature and water aging conditions, the composites showed only minimal reductions in properties, highlighting the efficacy of the silane treatment. The temperature-aged L2 composite had a tensile strength of 104MPa, flexural strength of 172.8 MPa, compression strength of 164MPa, and ILSS of 22.5MPa, while the water-aged L2 composite exhibited a tensile strength of 96MPa, flexural strength of 152.8MPa, compression strength of 146.4MPa, and ILSS of 21.4MPa. Scanning electron microscope (SEM) analysis confirmed uniform dispersion of biosilica particles, critical for improved performance, though higher concentrations led to agglomeration and stress points. The composites also demonstrated excellent flame retardancy, maintaining a UL-94 V-0 rating with decreased flame propagation speeds, specifically 9.05mm/min for L2. These findings underscore the potential of silane-treated biosilica as a reinforcing additive to enhance the durability and performance of composites in adverse conditions.