Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Simulink-Based Codesign and Cosimulation of a Common Rail™ Injector Test Bench

    This paper describes how a complete test bench for a Common Rail™ injection system has been built by means of hardware/software codesign techniques. The test bench is made up of two main components: a HW component running mainly on a FPGA device, interacting directly with the electromechanical components (namely, a high pressure pump, six electrical injectors, an electrical discharge valve, two pressure sensors), for high speed signal acquisition and generation, and for closed loop control; and a SW component, written in Visual Basic™, running on a PC, including a graphical user interface for parameters setting and system characterization. An additional signal acquisition board is also used for monitoring six load cells and for temperature control. The two components communicate through the standard PC's parallel port operated in Enhanced Parallel Port mode. The test bench is totally designed, simulated and implemented under the CodeSimulink hardware/software codesign environment, which runs as a plug-in of The MathworksSimulink™ design tool. A few other commercial HW/SW codesign tools have also been considered, but none of them offered either enough performance or flexibility or, more importantly, ease of use and compatibility with existing Simulink simulation models of the various components of the test bench.

  • chapterNo Access

    Collaborative Optimization of Mechanical Parts and Mechanical System for Dynamic Mechanical Design

    In order to take into account the interaction between mechanical parts and the mechanical system when optimizing complex mechanical products, a cosimulation based collaborative optimization method is presented, the presented method can achieve the topology optimization of mechanical parts and the mechanical system optimization simultaneously. A software framework is given as well, and the effectiveness is verified by an elaborated crank-connecting rod mechanism with a flexible connecting rod.