Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Interaction Dynamic Response of a High-Speed Train Moving Over Curved Bridges with Deficient or Surplus Superelevation

    This paper proposes a three-dimensional dynamic model for high-speed railway trains moving over curved bridges considering the transition curves, circular curves, and superelevation. Key features of this study are to consider the nonlinear geometrical relationships and creep relationships between the wheels and rail, for which the interactive iterative numerical algorithms are developed based on the equations of vertical displacement and rolling of wheelset, and the torsional resonance conditions of the vehicle–bridge system are verified. The results show that the torsional vibration will cause amplification on vertical dynamic response of the beam on the outside edge of the curve. The deficient/surplus superelevation plays an important role in the lateral and torsional angular displacements of the bridge, and the peak of the torsional resonance response can be reduced by adjusting the practical superelevation of the curve. The variations of wheel–load reduction rate and derailment coefficient in the curve section are positively correlated to the deficient/surplus superelevation. The curve radius is the key factor affecting the wear and fatigue of wheel–rail, and when the curve radius is greater than 7000 m, the wear and fatigue can be significantly reduced. Running at a deficient superelevation level can also reduce the wear and fatigue.

  • articleNo Access

    A Novel Orthogonally Separated Isolation System and Its Seismic Performance on a Curved Concrete Bridge

    The seismic response of curved concrete bridges is complex because of the geometric irregularity and induced planar rotation of the deck, which can magnify the displacement of the deck and deformation of the bearings. To control the planar rotation and thus the seismic response of the curved bridge, an orthogonally separated isolation system (OSIS) is proposed, which consists of the upper and lower isolation parts. With this, the planar relative displacement of the common isolation system is decomposed into the relative displacement of the upper part in one direction and the relative displacement of the lower isolation part in the orthogonal direction. Therefore, the planar rotation can be restrained and the seismic demand of the isolation bearing is decoupled. The analytical models of a curved bridge and the OSIS are established in OpenSees. A suite of 118 ground motions, of which 80 are ordinary and 38 are pulse-like, is selected as input with 24 different angles of incidence so as to consider the seismic variation. Nonlinear dynamic time-history analyses of the two models are conducted to evaluate the effectiveness of the OSIS. The results show that the OSIS can effectively decrease the deck displacement, the bearing deformation and the pier column shear force, especially under the ground motions with higher intensities, while the shear force increases slightly on the abutment.

  • articleNo Access

    Probabilistic Performance Assessment of Retrofitted Horizontally Curved Multi-Frame RC Box-Girder Bridges

    Bridge horizontal deck curvature and the prevalence of in-span hinges in multi-frame RC box-girder bridges have reinforced this class of bridge to response with unique dynamic behavior during seismic excitations. This paper assesses the impacts of 10 different retrofit strategies on the vulnerability of curved multi-frame RC box-girder bridges with multi-column bents based on nonlinear time history analyses in OpenSEES. Consistent with HAZUS-MH definitions, fragility curves corresponding to four damage states at the component and system levels are developed for various bridge deck radii. The results indicate that combinations of retrofit strategies should be used to enhance the desirable level of bridge performance. Moreover, the most effective retrofit strategy in reducing probable damage for a given intensity is dependent on the bridge deck radius and is a function of the damage state of interest.

  • chapterNo Access

    Analysis of Long-span Continuous Curved Bridge with Small Radius by Grillage Method

    The long-span curved bridge with small radius is often inevitably used in urban planning. The coupled effect of bending and torsion of this kind of bridge is very large with its long span and small radius. In order to research its structural performance accurately, the finite element software Midas Civil was used to analyze the curved bridge of Second Ring Road in Chengdu by grillage method, and it was compared with single beam method. The results indicated that the coupled effect of bending and torsion was very obvious and the grillage method was particularly suited to long-span curved bridge with small radius. This study provides a reference to the design of curved bridge.