The potential of continuous wavelet transforms for damage assessment of existing bridges is investigated herein. Different types of continuous wavelet transforms have been under investigation and the most effective ones have been introduced in a toolbox to automate the damage assessment procedure. In this paper, the performance of the wavelet approach and the influence of different parameters in the damage assessment procedures are studied through two examples: a simply supported beam and a three-span concrete bridge. Applying the wavelet transforms to a structure's static and/or dynamic response showed promising results with regard to localization of structural modification or damage. This paper underlines the high sensitivity of the wavelet analysis to damage intensity and its ability to be applied directly to the damaged data. These key characteristics could lead to this approach becoming one of the best for structural health monitoring of existing bridges in the near future.
This paper details the development of an engineering assessment procedure for reinforced concrete (RC) column failure when subjected to time-variant coupled axial and lateral loads due to internal building detonations. This is based on a comprehensive parametric study conducted using an advanced uncoupled Euler–Lagrange numerical modeling; splitting the structural and flow solvers for maximum integrity and accuracy. The column assessment charts discussed in this paper provide threshold combinations of TNT equivalence and stand-off distance for a range of column residual axial capacity levels corresponding to two key internal blast environments: Vented and contained. This will be of direct relevance to both practitioners and researchers involved with protective design of civilian and military buildings.
Significant research efforts have been invested on studying the response and damage of structures subjected to blast loads for better life and property protections. The single-degree-of-freedom (SDOF) approach has been widely adopted to simplify the structural response analysis for engineering design purpose. However, such an approach under certain circumstances oversimplifies the structural behavior and might not give reliable predictions of structural responses to blast loads. On the other hand, although detailed high fidelity finite element (FE) approach is able to give relatively accurate predictions of structural response, it is unfortunately not straightforward for application and very time-consuming, which impedes its application among engineers. Therefore, a method that can assure not only reliability but also efficiency is highly needed for design practice. In the present study, mode approximation method with Pressure–Impulse (P-I) diagrams is applied to analyze response and damage of RC slab due to blast load. Slab under analysis is assumed rigid-plastic and simply supported. Shear failure, bending failure and combined failure modes are considered based on different failure modes. Critical equations for structural shear and bending failures are derived respectively with appropriate failure criteria. P–I diagrams are then developed for quick damage assessments. The analytical results are verified by comparing with high fidelity numerical simulations. The reliability and efficiency of using this approach for design and analyzing RC slab response under blast loads are demonstrated.
This paper presents an identification technique for damage assessment of structures where only the information about the changes of measured natural frequencies can be directly utilized. The structural damage is characterized by a local decrease in the stiffness as represented by a scalar reduction of the material modulus. The objective of this study is to investigate the feasibility of using such a technique for identifying the structural damage in a real steel girder bridge. Numerical examples involving damaged reinforced concrete beams are first used to demonstrate the capability of the proposed computational technique, based on the nonlinear perturbation theory, to predict the exact location and severity of the damage. To experimentally validate the theory, laboratory damage detection experiments were performed on a simply supported reinforced concrete beam with various damage scenarios as the example. The results of the damage identification procedure based on the measurement of structure’s frequencies before and after occurrence of the damage show that this method can accurately locate the damage and predict the extent of damage. The method performs well even for a structure with a very serious damage as demonstrated by application of the proposed direct iteration technique to a six-span steel girder bridge. Using a limited number of measured natural frequencies, significant reduction in the stiffness of the bridge at multi-sites is detected.
With the increasing threat of terrorism attack, the probability of explosion inside the subway is very large. Reinforced concrete columns are the main supporting members of subway stations. If the columns of a subway station were subjected to near-field explosions, their damages can affect the safety of the subway after explosion. By using the finite element method, this paper established a coupling “explosive-air-concrete” model and verified the feasibility of the model through experiments. This model can be used in the damage assessment of subway station columns in terms of the bearing capacity, by which the damage of a reinforced concrete column can be divided into different levels. Furthermore, the effect of different parameters on the damage and bearing capacity of the subway station is discussed. The results demonstrate that the stirrup reinforcement ratio of a reinforced concrete is the key factor in determining the column damage under blast loadings. The present study therefore provides a key reference for assessing the damage of subway structures after terrorist attack.
In the literature, modal kinetic energy (MKE) has been commonly utilized for optimal sensor placement strategies. However, there have been very few studies on its application to structural damage detection. This paper introduces a new two-stage structural damage assessment method by combining the modal kinetic energy change ratio (MKECR) and symbiotic organisms search (SOS) algorithm. In the first stage, an efficient damage indicator, named MKECR, is used to locate the potential damaged sites. Meanwhile, for the purpose of comparison with MKECR, three other indices are also used. In the second stage, an SOS-based finite element (FE) model updating strategy is adopted to estimate the damage magnitude of identified sites, while excluding false warnings (if any), where an objective function is proposed using a combination of the flexibility matrix and modal assurance criterion (MAC). The performance of the SOS algorithm is also verified by comparing with four other meta-heuristic algorithms. Finally, three numerical examples of 2D truss and frame structures with various hypothetical damage scenarios are carried out to investigate the capability of the proposed method. The numerical results indicate that the proposed method not only can accurately locate and quantify single- and multi-damage in the structures, but also shows a great saving in computational cost.
High-pile wharf is an important port structure and may suffer from accidental explosions or terrorist bombing attack during the service life. The reinforced concrete (RC) pile is one of the popular vertical load-bearing piles of high-pile wharf structure. As a main load-bearing member of the high-pile wharf structure, the damage of RC pile due to underwater explosive may cause subsequently progressive collapse of the whole structure. In this paper, the dynamic response and failure mode of RC pile in high-pile wharf structure under the near-field non-contact underwater explosion are investigated using a combined experimental and numerical study. First, a typical RC pile was designed and tested for the near-field non-contact underwater explosion. The failure mode and damage of the RC pile specimen were obtained and analyzed. Second, the numerical model of the RC pile under near-field non-contact underwater explosion was established by adopting the commercial software AUTODYN, and then validated based on experimental results. It was shown that the results from numerical model and experimental test compared very well in terms of the damage pattern and lateral displacement. Furthermore, the full-scale numerical model of the RC pile for the near-field non-contact underwater explosion was developed based on the validated numerical model to investigate the damage pattern and failure mode of RC pile under varied underwater explosives. Lastly, the safety distance for the RC pile for the underwater explosion loading with consideration of different explosive mass, the explosive depth and the concrete strength was suggested. The outcome of this study presented reference for analysis, assessment and design of the type of RC pile for high-pile wharf structure subjected to near-field non-contact underwater explosion.
Precast segmental beams with prestressed external tendons have become increasingly common in bridge constructions owing to the merits of high-quality control and fast onsite construction with minimum environmental impact. Due to the nonlinear characteristics of the dynamic behavior of these segmental beams associated to the joint opening, the traditional condition monitoring and damage assessment methods based on vibration parameters either in time or frequency domain using the linear theory are unsuitable. To overcome this challenge, this paper proposes a damage assessment method through analyzing nonlinear structural dynamic responses for monitoring the conditions of segmental beams with different joint types and prestressed external tendons. Two damage indices are proposed to identify the occurrence of damage and to qualitatively indicate the damage severity. In the proposed approach, the measured dynamic responses of the segmental concrete beams under hammer impact are first adaptively decomposed into a finite number of mono-components by using variational mode decomposition (VMD) technique. Then, the instantaneous frequencies of the decomposed mono-components from the dynamic responses are obtained by conducting the Hilbert transform. Two damage indicators are defined for the damage assessment and for the identification of the damage location, respectively. Three four-span segmental beams with different types of joints (i.e. dry joints or epoxy joints) and prestressing tendon types (i.e. steel and carbon fiber reinforced polymer tendons) were constructed and tested under five loading levels with different damage severities. The feasibility and accuracy of the proposed approach are verified by comparing the identification results with the secant and initial stiffness extracted from the load–deflection curves at different loading levels. The effectiveness of these two damage indicators is also validated with the structural conditions observed in the tests. The results show that the proposed approach can successfully identify damage in segmental concrete beams.
This paper estimates the economic costs from storm surge scenarios in the Free and Hanseatic City of Hamburg. Hydrodynamic and damage models simulate the direct damages to residential and commercial buildings and equipment in a part of the city named Hamburg–Wilhelmsburg. They are assigned to individual economic sectors and then integrated into an economic model. This model accounts for the indirect impacts due to the interruption of production processes. Furthermore, the indirect costs are allocated to the flooded and non-flooded area in the whole city of Hamburg and then to each firm according to its relative size. Thus, the spatial distribution of indirect damages can be visualized. The approach is a helpful tool to simulate potential total damages from storm surge scenarios at the city scale and can be used to assess the effectiveness of possible protection measures. The inclusion of indirect costs into flood risk mapping complements common risk mapping procedures.
This paper describes an integrated spatial modeling concept for flood losses which has been developed within the joint research project "XtremRisK". For the final step of an integrated coastal flood risk analysis based on the "risk source-pathway-receptor" approach, the "Cellbased Risk Assessment" (CRA) concept is implemented for the spatial modeling of both tangible and intangible flood losses and their aggregation into the so-called "integrated risk". Finally, all results are utilized for the hazard and risk mapping, which serve as a basis for the decision making on risk management strategies. The different steps of the CRA concept and its applicability for different types of spatial input data are shown in the paper. Furthermore, advantages and limitations of this spatial modeling concept for integrated flood risk analysis are discussed. The practical implementation of the approach is described for the study area Hamburg-Wilhelmsburg (Germany) and the related categories of flood losses. The results show that the newly developed CRA concept is a suitable spatial modeling framework with respect to the comprehensive requirements in this integrated coastal flood risk analysis.
This paper contains technical information related to the Dinar project for the rehabilitation of moderately damaged reinforced concrete buildings after the 1 October 1995 Dinar earthquake. The structural appraisal of the damaged buildings, analytical studies leading to decisions regarding structural rehabilitation or demolition, the supervision on site of the rehabilitation and the overall coordination of the project was entrusted to the Middle East Technical University Earthquake Engineering Research Center [METU-EERC] by the Turkish Ministry of Public Works and Settlement. The project involved the rehabilitation of 35 moderately damaged RC buildings with a total floor plan area of 22 000 square metres.
The Uncoupled Modal Response History Analysis (UMRHA) method developed by Chopra et al. is modified in this paper to estimate damage to welded moment-resisting connections in a steel frame (MRSF) subjected to earthquake ground motions. The behaviour of these connections is modelled by a moment-rotation relationship that accounts for the cracking of the beam flange-to-column flange groove weld. The behaviour of the frame is approximated by a sequence of single-degree-of-freedom (SDOF) models for the first three modes to allow for the contribution of higher modes of vibration. The dynamic properties of these SDOF systems are determined by nonlinear static pushover analyses of the building frame. Because of the significant drop in connection strength caused by beam-to-column weld cracking, the pushover procedure uses a changing rather than invariant distribution of horizontal loads, while the structural responses are calculated from shapes that are based on the displaced shape of the frame after damage occurs. The accuracy of the method is demonstrated by a comparison with the results of a nonlinear time history analysis of the frame. This method can be used for rapid assessment of seismic damage or damage potential and to identify buildings requiring more detailed investigation.
Fragility functions that estimate the probability of exceeding different levels of damage in slab-column connections of existing non-ductile reinforced concrete buildings subjected to earthquakes are presented. The proposed fragility functions are based on experimental data from 16 investigations conducted in the last 36 years that include a total of 82 specimens. Fragility functions corresponding to four damage states are presented as functions of the level of peak interstory drift imposed on the connection. For damage states involving punching shear failure and loss of vertical carrying capacity, the fragility functions are also a function of the vertical shear in the connection produced by gravity loads normalised by the nominal vertical shear strength in the absence of unbalanced moments. Two sources of uncertainty in the estimation of damage as a function of lateral deformation are studied and discussed. The first is the specimen-to-specimen variability of the drifts associated with a damage state, and the second the epistemic uncertainty arising from using small samples of experimental data and from interpreting the experimental results. For a given peak interstorey drift ratio, the proposed fragility curves permit the estimation of the probability of experiencing different levels of damage in slab-column connections.
An analysis of the dynamic response and damage assessment of partially confined metallic cylinders under transverse air-blast loading is presented in this paper. The examination of the blast shock wave load distribution and the consequences of standoff distances on the plastic deformation of cylinders was conducted with meticulous attention in the experimental testing. The charges of TNT were determined to have masses of 16.3 kg and 29.5 kg, while the distances at which they were placed from the target varied between 1.5 m and 4.25 m. Three unique deformation modes were found to exist in the unilaterally supported cylinder, all of which were directly connected to the distribution of the blast load. In order to obtain an improved understanding of the dynamic behaviors exhibited in cylinders, a finite element simulation model was utilized and subsequently validated using an examination of the experimental results. The assessment of shock wave damage was conducted by utilizing the residual deformation of the metallic cylinder as an equivalent characterization under lateral blast shock wave loading. The duration of the positive pressure zone of the shock wave was determined to be between one-fourth and ten times the vibration period of a unilaterally supported cylinder, indicating that the P-I (overpressure-impulse) criterion could be utilized for damage evaluation. The incorporation of the P-I criterion was subsequently employed to evaluate the detrimental consequences, taking into consideration the radial distribution of residual deformation identified in metal cylindrical shell constructions subjected to lateral blast shock wave loading. This research contributed to a better comprehension of the dynamic behavior of partially confined metallic cylinders subjected to lateral blast loading and highlights the significance of the P-I criterion for evaluating and mitigating the damage effects in such scenarios.
Assessing the hazard and damage of a potential tsunami is an ongoing challenge in tsunami research. This study begins by simulating tsunami hazards using historical events. A tsunami propagation model is used to obtain the estimated maximum tsunami height along the west coast of Thailand for a rough return period, and rupture locations that have the potential to generate catastrophic tsunamis in Thailand for a specific return period are proposed. A tsunami inundation model is then performed to quantify each building's maximum inundation depth, using high-resolution satellite images to extract each building's location for the areas of interest located in southern Thailand. Nam Khem village and Patong beach are selected as study areas to represent village communities and tourist attractions, respectively. The model results are then used to obtain the numbers of exposed inhabitants and buildings for each earthquake return period. The developed tsunami fragility curves are applied to these figures to determine the number of potentially damaged buildings. The analysis suggests that the propagation model can be used to obtain rough estimations because it provided results similar to those of the inundation model. However, material type must be considered when fragility curves are used in a different country (i.e. reinforced concrete buildings in Thailand from the 2004 tsunami and wooden houses in Japan from the 2011 East Japan tsunami).
Although the 2004 Indian Ocean tsunami occurred several years ago and all the building repair and infrastructure reconstruction needed in Thailand to repair the damage caused by the tsunami are complete, there is still a need for damage assessment methods that can be used in future tsunami damage assessments in Thailand and that can possibly be applied to other countries. This study summarizes three methods for assessing tsunami damage, "tsunami damage criteria," "tsunami damage ratios" and "tsunami fragility curves," based on damage data from the 2004 Indian Ocean tsunami in Thailand, and these methods are compared using other tsunami events. Using the data from a field survey of damaged buildings, tsunami damage criteria were summarized for each degree of damage as a function of inundation depth for different building types. Tsunami damage ratios were summarized using building damage data obtained from surveys in the field and reconstruction cost estimates provided by the Thai government. The fragility curves developed were validated based on building performance data obtained from full-scale experiments on buildings and columns. Despite differences in the tsunami characteristics (inundation depth, current velocity and hydrodynamic force), the damage probabilities were nearly the same. The summarized methods might be useful for future tsunami damage assessments and loss estimation in Thailand and serve as guidelines for tsunami damage assessment in other countries.
Along with the development of economy and society, desertification exerts increasingly profound influences on natural environment and social-economic advancement and has attracted widespread attention from the world. China, as one of the countries that suffered from severe desertification problems, has made many efforts to research and combat desertification and has progressed in understanding and combating desertification through many years of hard work. Based on existing experiences and research achievements, this paper briefly discusses the causes, developmental processes, damage assessment and control mechanism of desertification in Northern China so as to provide some basic experiences for the further study of desertification in the future.
Repair and maintenance of existing concrete structures have become one of the most important in the field of civil engineering. Considerable experiential knowledge is required to diagnose the condition of the member and to recommend a proper repair and retrofitting procedure. Hence, there is a need for engineering computations for a proper damage assessment. This paper researches on fuzzy inference i.e., if-then rule-based program for assessment of reinforced concrete beams by considering certain parameters. This program is named as FuzDam in this paper, and it is developed using Visual Basic.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.