Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Dioxa-dithia Macrocycle-bridged Dimeric with Hexakis(alkylthio) Substituents and Network Polymer Phthalocyanines

    1,7-dithia (12-crown-4)-bridged phthalocyanine network polymers were prepared from tetracyanodibenzo-[1,7-dithia(12-crown-4)]. In addition, the synthesis of two 1,7-dithia (12-crown-4) linked peripherally octa-substituted dimeric phthalocyanines, which contain a combination of hexakis(alkylthia) side chains, is described. These extremely soluble compounds were prepared by the condensation of an iminoisoindoline derivative and a subphthalocyanine. The novel compounds are characterized by elemental analyses, UV/vis, IR, mass, 1H NMR and 13C NMR spectroscopy. The electrical conductivity measurements of three of the four network polymers were unsuccessful; however chemical doping with NOBF4 could be increased to a measurable value. The electrical conductivity of the dimeric phthalocyanines are in the semiconductor range.

  • articleNo Access

    Photophysical and photochemical properties of novel peripherally triethyleneoxysulfanyl substituted monomeric and Si–Si bonded dimeric silicon phthalocyanines

    Monomeric and Si–Si bonded dimeric silicon(IV) phthalocyanines bearing 4,7,10-trioxaundecylsulfanyl groups were synthesized. These novel phthalocyanine derivatives were characterized by general analysis methods such as FT-IR, MALDI-TOF or HRMS, 1H NMR and UV-vis electronic absorption. Their aggregation behaviors were described in dimethyl sulfoxide (DMSO). In addition, the photophysical and photochemical properties of these phthalocyanines were also investigated in DMSO to determine potential of these phthalocyanines to acts as photosensitizer for photodynamic therapy (PDT) of cancer. Their high singlet oxygen generation demonstrated their suitability for PDT applications. These peripherally 4,7,10-trioxaundecylsulfanyl substituted silicon(IV) phthalocyanines are promising Type II photosensitizers owing to their favorable singlet oxygen generation capability. In addition, their fluorescence quenching behavior by 1,4-benzoquinone were also studied in DMSO.