Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We conducted a modeling study of the threading dislocation behavior in chirped and unchirped InGaAs/GaAs (001) strained-layer superlattices (SLSs) using a Dodson & Tsao / Kujofsa & Ayers (DTKA) type plastic flow model. Four types of SLSs were investigated: type I was chirped using compositional modulation, type II was chirped using layer thickness modulation, type III was unchirped with alternating layers of InGaAs and GaAs, and type IV was unchirped with alternating layers of InGaAs having two different compositions. Generally the surface and average values of the dislocation density decreased with increasing total thickness. The dependence on top indium composition was more complex, due to dislocation compensation and multiplication effects, but for type II and IV superlattices, the average and surface threading dislocation densities increased in nearly monotonic fashion with top indium composition. Based on these results, the compositionally-modulated chirped (type I) and InGaAs/GaAs unchirped (type III) superlattices appear to be best suited as buffer layers for metamorphic devices, while the chirped superlattices with layer thickness modulation (type II) and InGaAs/InGaAs unchirped (type IV) superlattices appear to be poorly suited for use as buffer layers for devices containing high indium content.
Strained-layer superlattices (SLSs) have been used to modify the threading dislocation behavior in metamorphic semiconductor device structures; in some cases they have even been used to block the propagation of threading dislocations and are referred to in these applications as “dislocation filters.” However, such applications of SLSs have been impeded by the lack of detailed physical models. Here we present a “zagging and weaving” model for dislocation interactions in multilayers and strained-layer superlattices, and we demonstrate the use of this model to the threading dislocation dynamics in InGaAs/GaAs (001) structures containing SLSs.
We conducted a modeling study of the threading dislocation behavior in chirped and unchirped InGaAs/GaAs (001) strained-layer superlattices (SLSs) using a Dodson & Tsao / Kujofsa & Ayers (DTKA) type plastic flow model. Four types of SLSs were investigated: type I was chirped using compositional modulation, type II was chirped using layer thickness modulation, type III was unchirped with alternating layers of InGaAs and GaAs, and type IV was unchirped with alternating layers of InGaAs having two different compositions. Generally the surface and average values of the dislocation density decreased with increasing total thickness. The dependence on top indium composition was more complex, due to dislocation compensation and multiplication effects, but for type II and IV superlattices, the average and surface threading dislocation densities increased in nearly monotonic fashion with top indium composition. Based on these results, the compositionally-modulated chirped (type I) and InGaAs/GaAs unchirped (type III) superlattices appear to be best suited as buffer layers for metamorphic devices, while the chirped superlattices with layer thickness modulation (type II) and InGaAs/InGaAs unchirped (type IV) superlattices appear to be poorly suited for use as buffer layers for devices containing high indium content.
Strained-layer superlattices (SLSs) have been used to modify the threading dislocation behavior in metamorphic semiconductor device structures; in some cases they have even been used to block the propagation of threading dislocations and are referred to in these applications as “dislocation filters.” However, such applications of SLSs have been impeded by the lack of detailed physical models. Here we present a “zagging and weaving” model for dislocation interactions in multilayers and strained-layer superlattices, and we demonstrate the use of this model to the threading dislocation dynamics in InGaAs/GaAs (001) structures containing SLSs.