Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    EEG Connectivity Analysis Using Denoising Autoencoders for the Detection of Dyslexia

    The Temporal Sampling Framework (TSF) theorizes that the characteristic phonological difficulties of dyslexia are caused by an atypical oscillatory sampling at one or more temporal rates. The LEEDUCA study conducted a series of Electroencephalography (EEG) experiments on children listening to amplitude modulated (AM) noise with slow-rythmic prosodic (0.5–1Hz), syllabic (4–8Hz) or the phoneme (12–40Hz) rates, aimed at detecting differences in perception of oscillatory sampling that could be associated with dyslexia. The purpose of this work is to check whether these differences exist and how they are related to children’s performance in different language and cognitive tasks commonly used to detect dyslexia. To this purpose, temporal and spectral inter-channel EEG connectivity was estimated, and a denoising autoencoder (DAE) was trained to learn a low-dimensional representation of the connectivity matrices. This representation was studied via correlation and classification analysis, which revealed ability in detecting dyslexic subjects with an accuracy higher than 0.8, and balanced accuracy around 0.7. Some features of the DAE representation were significantly correlated (p<0.005) with children’s performance in language and cognitive tasks of the phonological hypothesis category such as phonological awareness and rapid symbolic naming, as well as reading efficiency and reading comprehension. Finally, a deeper analysis of the adjacency matrix revealed a reduced bilateral connection between electrodes of the temporal lobe (roughly the primary auditory cortex) in DD subjects, as well as an increased connectivity of the F7 electrode, placed roughly on Broca’s area. These results pave the way for a complementary assessment of dyslexia using more objective methodologies such as EEG.

  • articleNo Access

    Intrinsic Synchronization Analysis of Brain Activity in Obsessive–compulsive Disorders

    Obsessive–compulsive disorder (OCD) is one of the neuropsychiatric disorders qualified by intrusive and iterative annoying thoughts and mental attitudes that are activated by these thoughts. In recent studies, advanced signal processing techniques have been favored to diagnose OCD. This research suggests four different measurements; intrinsic phase-locked value, intrinsic coherence, intrinsic synchronization likelihood, and intrinsic visibility graph similarity that quantifies the synchronization level and complexity in electroencephalography (EEG) signals. This intrinsic synchronization is achieved by utilizing Multivariate Empirical Mode Decomposition (MEMD), a data-driven method that resolves nonlinear and nonstationary data into their intrinsic mode functions. Our intrinsic technique in this study demonstrates that MEMD-based synchronization analysis gives us much more detailed knowledge rather than utilizing the synchronization method alone. Furthermore, the nonlinear synchronization method presents more consistent results considering OCD heterogeneity. Statistical evaluation using sample t-test and U-test has shown the significance of such new methodology.

  • articleNo Access

    Dynamic Reorganization of the Cortical Functional Brain Network in Affective Processing and Cognitive Reappraisal

    Emotion and affect play crucial roles in human life that can be disrupted by diseases. Functional brain networks need to dynamically reorganize within short time periods in order to efficiently process and respond to affective stimuli. Documenting these large-scale spatiotemporal dynamics on the same timescale they arise, however, presents a large technical challenge. In this study, the dynamic reorganization of the cortical functional brain network during an affective processing and emotion regulation task is documented using an advanced multi-model electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) technique. Sliding time window correlation and k-means clustering are employed to explore the functional brain connectivity (FC) dynamics during the unaltered perception of neutral (moderate valence, low arousal) and negative (low valence, high arousal) stimuli and cognitive reappraisal of negative stimuli. Betweenness centralities are computed to identify central hubs within each complex network. Results from 20 healthy subjects indicate that the cortical mechanism for cognitive reappraisal follows a ‘top-down’ pattern that occurs across four brain network states that arise at different time instants (0–170ms, 170–370ms, 380–620ms, and 620–1000ms). Specifically, the dorsolateral prefrontal cortex (DLPFC) is identified as a central hub to promote the connectivity structures of various affective states and consequent regulatory efforts. This finding advances our current understanding of the cortical response networks of reappraisal-based emotion regulation by documenting the recruitment process of four functional brain sub-networks, each seemingly associated with different cognitive processes, and reveals the dynamic reorganization of functional brain networks during emotion regulation.

  • articleOpen Access

    Improved Activity Recognition Combining Inertial Motion Sensors and Electroencephalogram Signals

    Human activity recognition and neural activity analysis are the basis for human computational neureoethology research dealing with the simultaneous analysis of behavioral ethogram descriptions and neural activity measurements. Wireless electroencephalography (EEG) and wireless inertial measurement units (IMU) allow the realization of experimental data recording with improved ecological validity where the subjects can be carrying out natural activities while data recording is minimally invasive. Specifically, we aim to show that EEG and IMU data fusion allows improved human activity recognition in a natural setting. We have defined an experimental protocol composed of natural sitting, standing and walking activities, and we have recruited subjects in two sites: in-house (N=4) and out-house (N=12) populations with different demographics. Experimental protocol data capture was carried out with validated commercial systems. Classifier model training and validation were carried out with scikit-learn open source machine learning python package. EEG features consist of the amplitude of the standard EEG frequency bands. Inertial features were the instantaneous position of the body tracked points after a moving average smoothing to remove noise. We carry out three validation processes: a 10-fold cross-validation process per experimental protocol repetition, (b) the inference of the ethograms, and (c) the transfer learning from each experimental protocol repetition to the remaining repetitions. The in-house accuracy results were lower and much more variable than the out-house sessions results. In general, random forest was the best performing classifier model. Best cross-validation results, ethogram accuracy, and transfer learning were achieved from the fusion of EEG and IMUs data. Transfer learning behaved poorly compared to classification on the same protocol repetition, but it has accuracy still greater than 0.75 on average for the out-house data sessions. Transfer leaning accuracy among repetitions of the same subject was above 0.88 on average. Ethogram prediction accuracy was above 0.96 on average. Therefore, we conclude that wireless EEG and IMUs allow for the definition of natural experimental designs with high ecological validity toward human computational neuroethology research. The fusion of both EEG and IMUs signals improves activity and ethogram recognition.

  • articleNo Access

    Acrophobia Quantified by EEG Based on CNN Incorporating Granger Causality

    The aim of this study is to quantify acrophobia and provide safety advices for high-altitude workers. Considering that acrophobia is a fuzzy quantity that cannot be accurately evaluated by conventional detection methods, we propose a comprehensive solution to quantify acrophobia. Specifically, this study simulates a virtual reality environment called High-altitude Plank Walking Challenge, which provides a safe and controlled experimental environment for subjects. Besides, a method named Granger Causality Convolutional Neural Network (GCCNN) combining convolutional neural network and Granger causality functional brain network is proposed to analyze the subjects’ noninvasive scalp EEG signals. Here, the GCCNN method is used to distinguish the subjects with severe acrophobia, moderate acrophobia, and no acrophobia in a three-class classification task or no acrophobia and acrophobia in a two-class classification task. Compared with the mainstream methods, the GCCNN method achieves better classification performance, with an accuracy of 98.74% for the two-class classification task (no acrophobia versus acrophobia) and of 98.47% for the three-class classification task (no acrophobia versus moderate acrophobia versus severe acrophobia). Consequently, our proposed GCCNN method can provide more accurate quantitative results than the comparative methods, making it to be more competitive in further practical applications.

  • articleNo Access

    Machine Learning Algorithms and Statistical Approaches for Alzheimer’s Disease Analysis Based on Resting-State EEG Recordings: A Systematic Review

    Alzheimer’s Disease (AD) is a neurodegenerative disorder and the most common type of dementia with a great prevalence in western countries. The diagnosis of AD and its progression is performed through a variety of clinical procedures including neuropsychological and physical examination, Electroencephalographic (EEG) recording, brain imaging and blood analysis. During the last decades, analysis of the electrophysiological dynamics in AD patients has gained great research interest, as an alternative and cost-effective approach. This paper summarizes recent publications focusing on (a) AD detection and (b) the correlation of quantitative EEG features with AD progression, as it is estimated by Mini Mental State Examination (MMSE) score. A total of 49 experimental studies published from 2009 until 2020, which apply machine learning algorithms on resting state EEG recordings from AD patients, are reviewed. Results of each experimental study are presented and compared. The majority of the studies focus on AD detection incorporating Support Vector Machines, while deep learning techniques have not yet been applied on large EEG datasets. Promising conclusions for future studies are presented.

  • articleNo Access

    Discrimination Improvement Through Undesirable Feedback in Coupling Object Manipulation Tasks

    Subjective effort can significantly affect the ability of humans to act optimally in dynamic manipulation tasks. In a previous study, we designed a complex object coupling manipulation task that required tight performance and induced high cognitive workload. We hypothesize that strong-effort-related physiological reactivity during the dynamic manipulation task improves the user performance in an undesired task feedback situation. To test this hypothesis, using the motor intentions’ discrimination from electroencephalogram (EEG) measurements, we evaluate the effort expended by 20 participants in a controlling task with constraints involving complex coupling objects. Specifically, the finer motor decisions are obtained from the controlling information in EEG by using two fingers from the same hand rather than two hands. The motor intention is decoded from a task-dependent EEG through a regularized discriminant analysis, and the area under the curve is 0.94. Furthermore, we compare the undesired and desired task feedback conditions along with the individual’s effort dynamic adjustment, and investigate whether the undesired task feedback improved the discrimination of the motor activities. A stronger effort to attain the desired feedback state corresponds to improved motor activity discrimination from the EEG in the undesired task feedback scenario. The differences in the brain activities under the undesired and desired task feedback conditions are analyzed using brain-network-based topographical scalp maps. Our experiment provides preliminary evidence that inducing strong effort can improve discrimination performance during highly demanding tasks. This finding can advance our understanding of human attention, potentially improve the accuracy of intention recognition, and may inspire better EEG acquisition contexts.

  • articleNo Access

    Detecting Connected Consciousness During Propofol-Induced Anesthesia Using EEG Based Brain Decoding

    Connected consciousness refers to the state when external stimuli can enter into the stream of our consciousness experience. Emerging evidence suggests that although patients may not respond behaviorally to external stimuli during anesthesia, they may be aware of their surroundings. In this work, we investigated whether EEG based brain decoding could be used for detecting connected consciousness in the absence of behavioral responses during propofol infusion. A total of 14 subjects participated in our experiment. Subjects were asked to discriminate two types of auditory stimuli with a finger press during an ultraslow propofol infusion. We trained an EEG based brain decoding model using data collected in the awakened state using the same auditory stimuli and tested the model on data collected during the propofol infusion. The model provided a correct classification rate (CCR) of 78.74±11.15% when subjects were able to respond to the stimuli during the propofol infusion. The CCR dropped to 67.29±8.21% when subjects ceased responding and further decreased to 58.11±8.15% when we increased the propofol concentration by another 0.2 μg/ml. After terminating the propofol infusion, we observed that the CCR rebounded to 65.31±7.11% before the subjects regained consciousness. With the classification results, we provided evidence that loss of consciousness is a gradual process and may progress from full consciousness to connected consciousness and then to disconnected consciousness.

  • articleNo Access

    A Deep Fourier Neural Network for Seizure Prediction Using Convolutional Neural Network and Ratios of Spectral Power

    Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional methods usually adopt handcrafted features and manual parameter setting. The over-reliance on the expertise of specialists may lead to weak exploitation of features and low popularization of clinical application. This paper proposes a novel parameterless patient-specific method based on Fourier Neural Network (FNN), where the Fourier transform and backpropagation learning are synthesized to make the predictor more efficient and practical. The employment of FNN is the first attempt in the field of seizure prediction due to its automatic extraction of immanent spectra in epileptic signals. Despite the self-adaptive superiority of FNN, we introduce Convolutional Neural Network (CNN) to further improve its search capability in high-dimensional feature spaces. The study also develops a multi-layer module to estimate spectral power ratios of raw recordings, which optimizes the prediction by enhancing feature diversity. Based on these modules, this paper proposes a two-channel deep neural network: Fourier Ratio Convolutional Neural Network (FRCNN). To demonstrate the reliability of the model, we explain the mathematical meaning of hidden-layer neurons in FRCNN theoretically. This approach is evaluated on both intracranial and scalp EEG datasets. It shows that the predictor achieved a sensitivity of 91.2% and a false prediction rate (FPR) of 0.06h1 across intracranial subjects and a sensitivity of 85.4% and an FPR of 0.14h1 over scalp subjects. The results indicate that FRCNN enables the convenience of epilepsy treatments while preserving a high degree of precision. In the end, a detailed comparison with the previous methods demonstrates that FRCNN has achieved higher performance and generalization ability.

  • articleNo Access

    Decision-Feedback Stages Revealed by Hidden Markov Modeling of EEG

    Decision response and feedback in gambling are interrelated. Different decisions lead to different ranges of feedback, which in turn influences subsequent decisions. However, the mechanism underlying the continuous decision-feedback process is still left unveiled. To fulfill this gap, we applied the hidden Markov model (HMM) to the gambling electroencephalogram (EEG) data to characterize the dynamics of this process. Furthermore, we explored the differences between distinct decision responses (i.e. choose large or small bets) or distinct feedback (i.e. win or loss outcomes) in corresponding phases. We demonstrated that the processing stages in decision-feedback process including strategy adjustment and visual information processing can be characterized by distinct brain networks. Moreover, time-varying networks showed, after decision response, large bet recruited more resources from right frontal and right center cortices while small bet was more related to the activation of the left frontal lobe. Concerning feedback, networks of win feedback showed a strong right frontal and right center pattern, while an information flow originating from the left frontal lobe to the middle frontal lobe was observed in loss feedback. Taken together, these findings shed light on general principles of natural decision-feedback and may contribute to the design of biologically inspired, participant-independent decision-feedback systems.

  • articleNo Access

    Motor Intention Decoding from the Upper Limb by Graph Convolutional Network Based on Functional Connectivity

    Decoding brain intention from noninvasively measured neural signals has recently been a hot topic in brain-computer interface (BCI). The motor commands about the movements of fine parts can increase the degrees of freedom under control and be applied to external equipment without stimulus. In the decoding process, the classifier is one of the key factors, and the graph information of the EEG was ignored by most researchers. In this paper, a graph convolutional network (GCN) based on functional connectivity was proposed to decode the motor intention of four fine parts movements (shoulder, elbow, wrist, hand). First, event-related desynchronization was analyzed to reveal the differences between the four classes. Second, functional connectivity was constructed by using synchronization likelihood (SL), phase-locking value (PLV), H index (H), mutual information (MI), and weighted phase-lag index (WPLI) to acquire the electrode pairs with a difference. Subsequently, a GCN and convolutional neural networks (CNN) were performed based on functional topological structures and time points, respectively. The results demonstrated that the proposed method achieved a decoding accuracy of up to 92.81% in the four-class task. Besides, the combination of GCN and functional connectivity can promote the development of BCI.

  • articleNo Access

    Movement-Related EEG Oscillations of Contralesional Hemisphere Discloses Compensation Mechanisms of Severely Affected Motor Chronic Stroke Patients

    Conventional rehabilitation strategies for stroke survivors become difficult when voluntary movements are severely disturbed. Combining passive limb mobilization, robotic devices and EEG-based brain-computer interfaces (BCI) systems might improve treatment and clinical follow-up of these patients, but detailed knowledge of neurophysiological mechanisms involved in functional recovery, which might help for tailoring stroke treatment strategies, is lacking. Movement-related EEG changes (EEG event-related desynchronization (ERD) in beta and alpha bands, an indicator of motor cortex activation traditionally used for BCI systems), were evaluated in a group of 23 paralyzed chronic stroke patients in two unilateral motor tasks alternating paretic and healthy hands ((i) passive movement, using a hand exoskeleton, and (ii) voluntary movement), and compared to nine healthy subjects. In tasks using unaffected hand, we observed an increase of contralesional hemisphere activation for stroke patients group. Unexpectedly, when using paralyzed hand, motor cortex activation was reduced or absent in severely affected group of patients, while patients with moderate motor deficit showed an activation greater than control group. Cortical activation was reduced or absent in damaged hemisphere of all the patients in both tasks. Significant differences related to severity of motor deficit were found in the time course of alpha-beta bands power ratio in EEG of contralesional hemisphere while moving affected hand. These findings suggest the presence of different compensation mechanisms in contralesional hemisphere of stroke patients related to the grade of motor disability, that might turn quantitative EEG during a movement task, obtained from a BCI system controlling a robotic device included in a rehabilitation task, into a valuable tool for monitoring clinical progression, evaluating recovery, and tailoring treatment of stroke patients.

  • articleNo Access

    Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex

    Evidence indicates that the transcranial direct current stimulation (tDCS) has the potential to transiently modulate cognitive function, including age-related changes in brain performance. Only a small number of studies have explored the interaction between the stimulation sites on the scalp, task performance, and brain network connectivity within the frame of physiological aging. We aimed to evaluate the spread of brain activation in both young and older adults in response to anodal tDCS applied to two different scalp stimulation sites: Prefrontal cortex (PFC) and posterior parietal cortex (PPC). EEG data were recorded during tDCS stimulation and evaluated using the Small World (SW) index as a graph theory metric. Before and after tDCS, participants performed a behavioral task; a performance accuracy index was computed and correlated with the SW index. Results showed that the SW index increased during tDCS of the PPC compared to the PFC at higher EEG frequencies only in young participants. tDCS at the PPC site did not exert significant effects on the performance, while tDCS at the PFC site appeared to influence task reaction times in the same direction in both young and older participants. In conclusion, studies using tDCS to modulate functional connectivity and influence behavior can help identify suitable protocols for the aging brain.

  • articleNo Access

    Decoding Color Visual Working Memory from EEG Signals Using Graph Convolutional Neural Networks

    Color has an important role in object recognition and visual working memory (VWM). Decoding color VWM in the human brain is helpful to understand the mechanism of visual cognitive process and evaluate memory ability. Recently, several studies showed that color could be decoded from scalp electroencephalogram (EEG) signals during the encoding stage of VWM, which process visible information with strong neural coding. Whether color could be decoded from other VWM processing stages, especially the maintaining stage which processes invisible information, is still unknown. Here, we constructed an EEG color graph convolutional network model (ECo-GCN) to decode colors during different VWM stages. Based on graph convolutional networks, ECo-GCN considers the graph structure of EEG signals and may be more efficient in color decoding. We found that (1) decoding accuracies for colors during the encoding, early, and late maintaining stages were 81.58%, 79.36%, and 77.06%, respectively, exceeding those during the pre-stimuli stage (67.34%), and (2) the decoding accuracy during maintaining stage could predict participants’ memory performance. The results suggest that EEG signals during the maintaining stage may be more sensitive than behavioral measurement to predict the VWM performance of human, and ECo-GCN provides an effective approach to explore human cognitive function.

  • articleNo Access

    Wavelet-Based Biphase Analysis of Brain Rhythms in Automated Wake–Sleep Classification

    Many studies in the field of sleep have focused on connectivity and coherence. Still, the nonstationary nature of electroencephalography (EEG) makes many of the previous methods unsuitable for automatic sleep detection. Time-frequency representations and high-order spectra are applied to nonstationary signal analysis and nonlinearity investigation, respectively. Therefore, combining wavelet and bispectrum, wavelet-based bi-phase (Wbiph) was proposed and used as a novel feature for sleep–wake classification. The results of the statistical analysis with emphasis on the importance of the gamma rhythm in sleep detection show that the Wbiph is more potent than coherence in the wake–sleep classification. The Wbiph has not been used in sleep studies before. However, the results and inherent advantages, such as the use of wavelet and bispectrum in its definition, suggest it as an excellent alternative to coherence. In the next part of this paper, a convolutional neural network (CNN) classifier was applied for the sleep–wake classification by Wbiph. The classification accuracy was 97.17% in nonLOSO and 95.48% in LOSO cross-validation, which is the best among previous studies on sleep–wake classification.

  • articleNo Access

    Classification of Low and High Schizotypy Levels via Evaluation of Brain Connectivity

    Schizotypy is a latent cluster of personality traits that denote a vulnerability for schizophrenia or a type of spectrum disorder. The aim of the study is to investigate parametric effective brain connectivity features for classifying high versus low schizotypy (LS) status. Electroencephalography (EEG) signals are recorded from 13 high schizotypy (HS) and 11 LS participants during an emotional auditory odd-ball task. The brain connectivity signals for machine learning are taken after the settlement of event-related potentials. A multivariate autoregressive (MVAR)-based connectivity measure is estimated from the EEG signals using the directed transfer functions (DTFs) method. The values of DTF power in five standard frequency bands are used as features. The support vector machines (SVMs) revealed significant differences between HS and LS. The accuracy, specificity, and sensitivity of the results using SVM are as high as 89.21%, 90.3%, and 88.2%, respectively. Our results demonstrate that the effective brain connectivity in prefrontal/parietal and prefrontal/frontal brain regions considerably changes according to schizotypal status. These findings prove that the brain connectivity indices offer valuable biomarkers for detecting schizotypal personality. Further monitoring of the changes in DTF following the diagnosis of schizotypy may lead to the early identification of schizophrenia and other spectrum disorders.

  • articleNo Access

    Classification of Depth of Coma Using Complexity Measures and Nonlinear Features of Electroencephalogram Signals

    In recent years, some electrophysiological analysis methods of consciousness have been proposed. Most of these studies are based on visual interpretation or statistical analysis, and there is hardly any work classifying the level of consciousness in a deep coma. In this study, we perform an analysis of electroencephalography complexity measures by quantifying features efficiency in differentiating patients in different consciousness levels. Several measures of complexity have been proposed to quantify the complexity of signals. Our aim is to lay the foundation of a system that will objectively define the level of consciousness by performing a complexity analysis of Electroencephalogram (EEG) signals. Therefore, a nonlinear analysis of EEG signals obtained with a recording scheme proposed by us from 39 patients with Glasgow Coma Scale (GCS) between 3 and 8 was performed. Various entropy values (approximate entropy, permutation entropy, etc.) obtained from different algorithms, Hjorth parameters, Lempel–Ziv complexity and Kolmogorov complexity values were extracted from the signals as features. The features were analyzed statistically and the success of features in classifying different levels of consciousness was measured by various classifiers. Consequently, levels of consciousness in deep coma (GCS between 3 and 8) were classified with an accuracy of 90.3%. To the authors’ best knowledge, this is the first demonstration of the discriminative nonlinear features extracted from tactile and auditory stimuli EEG signals in distinguishing different GCSs of comatose patients.

  • articleNo Access

    Deep Learning Methods for Multi-Channel EEG-Based Emotion Recognition

    Currently, Fourier-based, wavelet-based, and Hilbert-based time–frequency techniques have generated considerable interest in classification studies for emotion recognition in human–computer interface investigations. Empirical mode decomposition (EMD), one of the Hilbert-based time–frequency techniques, has been developed as a tool for adaptive signal processing. Additionally, the multi-variate version strongly influences designing the common oscillation structure of a multi-channel signal by utilizing the common instantaneous concepts of frequency and bandwidth. Additionally, electroencephalographic (EEG) signals are strongly preferred for comprehending emotion recognition perspectives in human–machine interactions. This study aims to herald an emotion detection design via EEG signal decomposition using multi-variate empirical mode decomposition (MEMD). For emotion recognition, the SJTU emotion EEG dataset (SEED) is classified using deep learning methods. Convolutional neural networks (AlexNet, DenseNet-201, ResNet-101, and ResNet50) and AutoKeras architectures are selected for image classification. The proposed framework reaches 99% and 100% classification accuracy when transfer learning methods and the AutoKeras method are used, respectively.

  • articleNo Access

    Epileptic Seizure Prediction Using Deep Neural Networks Via Transfer Learning and Multi-Feature Fusion

    Epilepsy is one of the most common neurological diseases, which can seriously affect the patient’s psychological well-being and quality of life. An accurate and reliable seizure prediction system can generate alarm before epileptic seizures to provide patients and their caregivers with sufficient time to take appropriate action. This study proposes an efficient seizure prediction system based on deep learning in order to anticipate the onset of the seizure as early as possible. Handcrafted features extracted based on the prior knowledge and hidden deep features are complementarily fused through the feature fusion module, and then the hybrid features are fed into the multiplicative long short-term memory (MLSTM) to explore the temporal dependency in EEG signals. A one-dimensional channel attention mechanism is implemented to emphasize the more representative information in the multi-channel output of the MLSTM. Finally, a transfer learning strategy is proposed to transfer the weights of the base model trained on the EEG data of all patients to the target patient model, and the latter is then continuously trained using the EEG data of the target patient. The proposed method achieves an average sensitivity of 95.56% and a false positive rate (FPR) of 0.27/h on the SWEC-ETHZ intracranial EEG data. For the more challenging CHB-MIT scalp EEG database, an average sensitivity of 89.47% and a FPR of 0.34/h are obtained. Experimental results demonstrate that the proposed method has good robustness and generalization ability in both intracranial and scalp EEG signals.