Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Dynamical origin of the electroweak scale and a 125 GeV boson

    A fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model is considered. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state, implies that the mass originating solely from new strong dynamics can be much heavier, of the order of 1 TeV. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results.

  • chapterNo Access

    Dynamical Origin of the Electroweak Scale and a 125 GeV Boson

    A fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model is considered. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state, implies that the mass originating solely from new strong dynamics can be much heavier, of the order of 1 TeV. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results.