The firefly algorithm and cuckoo search are the meta-heuristic algorithms efficient to determine the solution for the searching and optimization problems. The current work proposes an integrated concept of quantum-inspired firefly algorithm with cuckoo search (IQFACS) that adapts both algorithms’ expedient attributes to optimize the solution set. In the IQFACS algorithm, the quantum-inspired firefly algorithm (QFA) ensures the diversification of fireflies-based generated solution set using the superstitions quantum states of the quantum computing concept. The cuckoo search (CS) algorithm uses the Lévy flight attribute to escape the QFA from the premature convergence and stagnation stage more effectively than the quantum principles. Here, the proposed algorithm is applied for the application of optimal path planning. Before using the proposed algorithm for path planning, the algorithm is tested on different optimization benchmark functions to determine the efficacy of the proposed IQFACS algorithm than the firefly algorithm (FA), CS, and hybrid FA and CS algorithm. Using the proposed IQFACS algorithm, path planning is performed on the satellite images with vegetation as the focused region. These satellite images are captured from Google Earth and belong to the different areas of India. Here, satellite images are converted into morphologically processed binary images and considered as maps for path planning. The path planning process is also executed with the FA, CS, and QFA algorithms. The performance of the proposed algorithm and other algorithms are accessed with the evaluation of simulation time and the number of cycles to attain the shortest path from defined source to destination. The error rate measure is also incorporated to analyze the overall performance of the proposed IQFACS algorithm over the other algorithms.
This paper proposes a novel optimization approach of the quantum-behaved binary firefly algorithm with a gravitational search algorithm (QBFA-GSA) for discrete feature optimization, which is utilized for the application of human activity recognition. The firefly algorithm (FA) and gravitational search algorithm (GSA) are recently introduced meta-heuristic algorithms that are efficient for optimizing the continuous solution set. The binarized version of the proposed approach enables it to optimize the discrete features and quantum behavior ensures the better diversity of the final optimized features. In the proposed QBFA-GSA approach, the features are optimized by following the combined advantageous attributes of FA and GSA in which the search space is initially explored by firefly agents until the current firefly finds the brighter firefly and further these agents adapt the attributes of GSA to complete the process. These optimized features are passed to deep neural networks (DNN) for the classification of human activities. Here, DNN models of deep convolutional neural networks (DCNN) and DCNN extended with residual blocks (DCNN-RB) are incorporated. The evaluation experiments for human activity recognition are conducted on a benchmark dataset of UCF-101, which is a composition of 101 different activities. The experimental results of the proposed QBFA-GSA approach are superlative to state-of-art techniques, which indicate that the proposed approach is efficient to optimize the features.
Nowadays, technology has shifted the way individuals access news from conventional media sources to social media platforms. The active engagement of people with social media platforms leads them to consume news without confirming its source or legitimacy. This facilitated the dissemination of more manipulated and false information in the form of rumors and fake news. Fake news can affect public opinion and create chaos and panic among the population. Thus, it is essential to employ an advanced methodology to identify fake news with high precision. This research work has proposed the concept of the quantum-inspired firefly algorithm with the ant miner plus algorithm (QFAMP) for more effective fake news detection. The proposed QFAMP algorithm utilizes the attributes of quantum computing (QC), the firefly algorithm (FA), and the ant miner plus algorithm (AMP). Here, the QFA approach ensures the effective exploitation of the firefly agents until the agents are able to search for the brighter firefly. Further, the AMP algorithm utilizes the best ants with higher pheromone concentrations for global exploration, which also avoids the premature convergence of the QFA agents. In addition, the AMP algorithm serves as an efficient data mining variant that is effective for the classification of fake news. The efficacy of the proposed QFAMP algorithm is evaluated for the dataset of FakeNewsNet, which is composed of two sub-categories: BuzzFeed and PolitiFact. The experimental evaluations indicate the effective performance of the proposed algorithm compared to the other techniques.
Path planning has always been a hot topic in the field of mobile robot research. At present, the mainstream issues of the mobile robot path planning are combined with the swarm intelligence algorithms. Among them, the firefly algorithm is more typical. The firefly algorithm has the advantages of simple concepts and easy implementation, but it also has the disadvantages of being easily trapped into a local optimal solution, with slow convergence speed and low accuracy. To better combine the path planning of mobile robot with firefly algorithm, this paper studies the optimization firefly algorithm for the path planning of mobile robot. By using the strategies of optimizing the adaptive parameters in the firefly algorithm, an adaptive firefly algorithm is designed to solve the problem that the firefly algorithm is easy to get into the local optimal solution and improves the performance of firefly algorithm. The optimized algorithm with high performance can improve the computing ability and reaction speed of the mobile robot in the path planning. Finally, the theoretical and experimental results have verified the effectiveness and superiority of the proposed algorithm, which can meet the requirements of the mobile robot path planning.
Wireless sensor networks (WSNs) provide acceptable low cost and efficient deployable solutions to execute the target tracking, checking and identification of substantial measures. The primary step necessary for WSN is to organize all the sensor nodes in their positions to build up an effective network. In the sensor deployment model, Target COVerage (TCOV) and Network CONnectivity (NCON) are the basic issues in WSNs that have obtained significant consideration in sensor deployment. This paper intends to develop an intelligent context awareness algorithm for sensor deployment process in WSN. Accordingly, the process is divided into two phases. In the first phase, the TCOV process is performed, whereas the second phase of the algorithm establishes NCON among the sensors. An objective model to meet both TCOV and NCON is formulated as a minimization problem. The problem is solved using FireFly (FF) optimization to determine the optimal locations for sensors. It leads to an intelligent sensor deployment model that can determine the optimal locations for the sensors in the WSN. Further, the proposed FF-TCOV and FF-NCON models are compared against the conventional algorithms, namely, genetic algorithm, particle swarm optimization, artificial bee colony, differential evolution and evolutionary algorithm-based TCOV and NCON models. The results achieved from the simulation show the improved performance of the proposed technique.
The implication of firefly and fuzzy firefly optimization algorithms has been greatly witnessed in clustering techniques and extensively used in applications such as Image segmentation. Parameters such as step factor and attractiveness have been kept constant in these algorithms, which affect the convergence rate and accuracy of the clustering process. Though fuzzy adaptive firefly algorithm tackled this problem by making those parameters an adaptive one, issues such as low convergence rate, and provision of non-optimal solutions are still there. To tackle these issues, this paper proposed a novel fuzzy adaptive fuzzy firefly algorithm that significantly improves the accuracy and convergence rate while comparing with the existing optimization algorithms. Further, the proposed algorithm fused with existing hybrid clustering algorithms involving fuzzy set, intuitionistic fuzzy set, and rough set resulted in eight novel hybrid clustering algorithms which lead to better performance in optimizing the selection of initial centroids. To validate the proposal, experimental studies have been conducted on datasets found in bench-marking data repositories such as UCI, and Kaggle. The performance and accuracy evaluation of proposed algorithms have been carried out with the aid of seven accuracy measures. Results clearly indicate the improved accuracy and convergence rate of the proposed algorithms.
Since software system is becoming more and more complex than before, performance degradation and even abrupt download, which are called software aging phenomena, bring about a great deal of economic loss. To counter these problems, some methods are used. Support vector machine is an effective method to tackle software aging problems, but its performance is influenced by the selection of hyper-parameters. A method is proposed to optimize the hyper-parameter selection of support vector machine in this work. The proposed method which is used as a training algorithm to optimize the parameter selection of support vector machine, utilizes the global exploration power of firefly method to achieve faster convergence and also a better accuracy. In the experiment, we use two metrics to test the effect of the proposed method. The results indicate that the presented method owns the highest accuracy in both the available memory prediction and heap memory prediction of Web server for software aging predictions.
Ti–6Al–4V ELI alloy is one of the most familiar materials for orthopedic implants, aeronautical parts, marine components, oil and gas production equipment, and cryogenic vessel applications. Therefore, its appropriate quality of finishing is highly essential for these applications. But the characteristics like lower modulus of elasticity, lesser thermal conductivity, and high chemical sensitivity placed it in the categories of difficult-to-cut metal alloys. Also, tooling cost is one of the prime issues in the machining of this alloy. Therefore, this research is more inclined to use a low-budget uncoated carbide tool in turning the Ti–6Al–4V ELI alloy. Also, the selection of suitable levels of machining parameters is highly indispensable to get the appropriate surface finish with a low tooling cost. So, the L16 experimental design is utilized to check the performances of the uncoated carbide tool in the turning tests. The performance indexes like surface roughness (Ra), flank wear of tool (VBc), and material removal rate (MRR) are measured and studied with the help of surface plots and interaction plots. Further, the Firefly Algorithm optimization is employed to find the optimal cutting parameters and cutting response values. The local optimal values of the input parameters a, f, and Vc are estimated as 0.3241mm, 0.0893mm/rev, and 82.41m/min, respectively. Similarly, the global optimal values for the responses Ra, VBc, and MRR are reported as 0.6321μm, 0.09253mm, and 24.61g/min, individually. Additionally, to predict the responses, Generalized Regression Neural Network (GRNN) modeling is employed and the average absolute error for each response is noticed to be less than 1%. Therefore, the GRNN modeling tool is strongly recommended for various machining applications.
The Unmanned Aerial Vehicles (UAV) are widely used for capturing images in border area surveillance, disaster intensity monitoring, etc. An aerial photograph offers a permanent recording solution as well. But rapid weather change, low quality image capturing equipments results in low/poor contrast images during image acquisition by Autonomous UAV. In this current study, a well-known meta-heuristic technique, namely, Firefly Algorithm (FA) is reported to enhance aerial images taken by a Mini Unmanned Aerial Vehicle (MUAV) via optimizing the value of certain parameters. These parameters have a wide range as used in the Log Transformation for image enhancement. The entropy and edge information of the images is used as an objective criterion for evaluating the image enhancement of the proposed system. Inconsistent with the objective criterion, the FA is used to optimize the parameters employed in the objective function that accomplishes the superlative enhanced image. A low-light imaging has been performed at evening time to prove the effectiveness of the proposed algorithm. The results illustrate that the proposed method has better convergence and fitness values compared to Particle Swarm Optimization. Therefore, FA is superior to PSO, as it converges after a less number of iterations.
Traditional neural networks are very diverse and have been used during the last decades in the fields of data classification. These networks like MLP, back propagation neural networks (BPNN) and feed forward network have shown inability to scale with problem size and with the slow convergence rate. So in order to overcome these numbers of drawbacks, the use of higher order neural networks (HONNs) becomes the solution by adding input units along with a stronger functioning of other neural units in the network and transforms easily these input units to hidden layers. In this paper, a new metaheuristic method, Firefly (FFA), is applied to calculate the optimal weights of the Functional Link Artificial Neural Network (FLANN) by using the flashing behavior of fireflies in order to classify ISA-Radar target. The average classification result of FLANN-FFA which reached 96% shows the efficiency of the process compared to other tested methods.
Surface finish is the most desired properties of any sophisticated machinery parts for its proper functioning and long endurance. The surface finish must be in the order of micrometer to nanometer for most of the machinery parts. The nontraditional surface finish processes prepare these parts; in these processes, the uses of electromagnet play a vital role in the surface finishing mechanism. Magnetic abrasive flow finishing (MAFF) is such a hybrid process, which gives a combined effect of abrasive flow finishing (AFF) and magnetic abrasive finishing (MAF). In this method, a pair of electromagnets are attached to the AFF setup. By using electromagnet in the AFF process, it enhanced material removal and surface finishing. The main process parameters selected in the MAFF process were magnetic flux density, number of cycles, percentage abrasive content, piston speed, and corresponding responses selected were material removal, percentage improvement in surface finish. In this research paper, the responses were optimized by a combination of utility theory and meta-heuristic firefly’s algorithm. The utility theory based-firefly algorithm’s predicted global optimum parameters set, which was more suitable for reducing the finishing time and required surface finish. The confirmatory test validated this optimized parameter set and it was revealed that the meta-heuristic firefly algorithm embedded with utility theory had given optimized results in the MAFF process.
Protein–Protein Interactions (PPIs) are very important as they coordinate almost all cellular processes. This paper attempts to formulate PPI prediction problem in a multi-objective optimization framework. The scoring functions for the trial solution deal with simultaneous maximization of functional similarity, strength of the domain interaction profiles, and the number of common neighbors of the proteins predicted to be interacting. The above optimization problem is solved using the proposed Firefly Algorithm with Nondominated Sorting. Experiments undertaken reveal that the proposed PPI prediction technique outperforms existing methods, including gene ontology-based Relative Specific Similarity, multi-domain-based Domain Cohesion Coupling method, domain-based Random Decision Forest method, Bagging with REP Tree, and evolutionary/swarm algorithm-based approaches, with respect to sensitivity, specificity, and F1 score.
Firefly algorithm is a swarm based algorithm that can be used for solving optimization problems. This paper proposed an improved fuzzy adaptive firefly algorithm (FAFA). In the proposed FAFA, a fuzzy system is used to adapt Firefly Algorithm’s parameters in order to improve its ability in global and local searches. Also, we used different fireflies initializing intervals and different iteration numbers to show the algorithm capability to find global optima. Results focus on the two case study categories of function optimization (seven benchmark functions) and presented a novel optimal multilevel thresholding approach for histogram-based image segmentation by using proposed FAFA and Otsu method. Evidence indicates that the optimization results of proposed FAFA approach are so better than the standard FA.
Genetic Algorithm (GA) is a widely used optimization technique with multitudinous applications. Improving the performance of the GA would further augment its functionality. This paper presents a Crossover Improved GA (CIGA) that emulates the motion of fireflies employed in the Firefly Algorithm (FA). By employing this mimicked crossover operation, the overall performance of the GA is greatly enhanced. The CIGA is tested on 14 benchmark functions conjointly with the other existing optimization techniques to establish its superiority. Finally, the CIGA is applied to the practical optimization problem of synthesizing non-uniform linear antenna arrays with low side lobe levels (SLL) and low beam width, both requirements being incompatible. However, the proposed CIGA applied for the synthesis of a 12 element array yields an SLL of −29.2dB and a reduced beam width of 19.1∘.
The accurate analysis and controller design for high-order systems are important issues. In this paper, a design of controller is suggested to Single Machine Infinite Bus (SMIB) System in which its order is reduced by the proposed self-adaptive Firefly Algorithm (FA). First, the dynamic adaption to the dominant parameters of the standard FA is proposed for overcoming its disadvantages and improving its ability in searching the global optimum solution with application to reduce the model order of SMIB. The parameters which are proposed to self-adaption are both of the light absorption based on the mean distance of fireflies’ positions and the step setting based on the fitness information to the status of preceding firefly and the current fireflies. Second, proportional–integral–derivative (PID) controller is suggested to be designed by pole zero cancellation method via the step response characteristics of the reduced-order SMIB to be applied to its high order. The efficiency of the proposed methods is tested on high-order SMIB to get its corresponding low order and to control it. The experimental results prove the efficacy of self-adaptive FA compared to the standard FA and the methods in the literature in terms of step response characteristics using error indices. The proposed methods assure the stability of the reduced order and the ability of the designed controller to handle both high and low-order model.
In classifying diseases, many datasets have a number of redundant features that do not affect classification accuracy. There are several evolutionary algorithms that are used to determine the feature and reduce dimensional patterns such as the gray wolf optimization (GWO) and the firefly algorithm (FFA). In this paper, a hybrid optimization algorithm BGWO_FFA was proposed to find the optimal subset of datasets. BGWO_FFA benefits from the ability of both GWO and FFA to find the best subset of features in search space. The results show that BGWO_FFA significantly outperformed the results of the algorithm BGWO as it showed efficient and high accuracy through the mean squared error (MSE) and the number of features selection.
In cloud computing, a lot of challenges like the server failures, loss of confidentiality, improper workloads, etc. are still bounding the efficiency of cloud systems in real-world scenarios. For this reason, many research works are being performed to overcome the shortcoming of existing systems. Among them, load balancing seems to be the most critical issue that worsen the performance of the cloud sector, and hence there necessitates the optimal load balancing with optimal task scheduling. With the intention of accomplishing optimal load balancing by effectual task deployment, this paper plans to develop an advanced load balancing model with the assistance acquired from the metaheuristic algorithms. Usually, handling of tasks in cloud system is an NP-hard problem and moreover, nonpreemptive independent tasks are crucial in cloud computing. This paper goes with the introduction of a new optimal load balancing model by considering three major objectives: minimum makespan, priority, and load balancing, respectively. Moreover, a new single-objective function is also defined that incorporates all the three objectives mentioned above. Furthermore, the deployment of tasks must be optimal and for this a new hybrid optimization algorithm referred as Firefly Movement insisted WOA (FM-WOA) is introduced. This FM-WOA is the conceptual amalgamation of standard Whale Optimization Algorithm (WOA) and Firefly (FF) algorithm. Finally, the performances of the proposed FM-WOA model is compared over the conventional models with the intention of proving its efficiency in terms of makespan, task completion (priority), and degree of imbalance as well.
Electromyography (EMG) signal recording equipment is comparatively modern. Still, there are enough restrictions in detection, recording, and characterization of EMG signals because of nonlinearity in the equipment, which leads to noise components. The most commonly affecting artifacts are Power Line Interference (PLI-Noise), Baseline Wander noise (BW-Noise), and Electrocardiogram noise (ECG-Noise). Adaptive filters are advanced and effective solutions for EMG signal denoising, but the improper tuning of filter coefficients leads to noise components in the denoised EMG signal. This defect in adaptive filters triggers or motivates us to optimize the filter coefficients with existing meta-heuristics optimization algorithms. In this paper, Least Mean Squares (LMS) filter and Recursive Least Squares (RLS) adaptive filter coefficients are optimized with a new Hybrid Firefly–Particle Swarm Optimization (HFPSO) by taking the advantages and disadvantages of both the algorithms. Experiments are conducted with the proposed HFPSO and it proved better in EMG signal denoising in terms of the measured parameters like signal-to-noise ratio (SNR) in dB, maximum error (ME), mean square error (MSE), etc. In the second part of the work, the denoised EMG signal features are extracted for the diagnosis of diseases related to myopathy and neuropathy as EMG signal reflects the neuromuscular function and EMG signal examination may contribute to the diagnosis of muscle disorder linked to myopathy and neuropathy.
This chapter is about the bat and firefly algorithms (FA). The bat algorithm (BA) is a metaheuristic swarm intelligence technique based on the echolocation trait of bats. Bats possess incredible capabilities with their ability to hunt for prey in the dark using sonar and the Doppler effect. The firefly algorithm is a nature-inspired metaheuristic algorithm based on the flashing patterns and behavior of fireflies. We apply the algorithms to the missing data estimation problem.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.