Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification "worth" is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.
As relics of history, ancient copper inscriptions are found in many countries. Information in the image or letter forms contained on copper ancient inscription has a very high value. The age and environmental factors caused damage to the surface of the inscription and also reduced the appearances of the image and letter. In this paper, we describe a novel segmentation methodology based on multi-texture features for ancient copper inscriptions which were severely damaged. The segmentation results of letters on ancient copper inscriptions by using the proposed method have an average accuracy of 90%. Based on these results, the proposed method is suitable for letter segmentation of the ancient copper inscriptions.
Ultrasound (US) imaging is the initial phase in the preliminary diagnosis for the treatment of kidney diseases, particularly to estimate kidney size, shape and position, to give information about kidney function, and to help in diagnosis of abnormalities like cysts, stones, junctional parenchyma and tumors which is shown in Figs. 7–9. This study proposes Grey Level Co-occurrence Matrix (GLCM)-based Probabilistic Principal Component Analysis (PPCA) and Artificial Neural Network (ANN) method for the classification of kidney images. Grey Wolf Optimization (GWO) is used to update the current positions of abnormal kidney images in the discrete searching space, thus getting the optimal feature subset for better classification purposes based on Feed Forward Neural Network (FFNN). The scanned image is pre-processed and the required features are extracted by GLCM, among those, some features are selected by PPCA. Feed Forward Back propagation Neural Network (FFBN) is used to classify the normalities and abnormalities in the part of kidney images. The proposed methodology is implemented in MATLAB platform and the analyzed result produces 98% accuracy using GWO-FFBN technique.
Iris recognition is one of the important authentication mechanism used extensively in biometric applications. The majority of the applications use single class iris recognition with normalized iris image. The proposed technique uses multi class iris recognition with region of interest (ROI) iris image on supervised learning. In this paper, the term ROI is referred as Un-normalized iris. The iris features are extracted using gray level co-occurrence matrix (GLCM) and a multiclass training vector is created. Further, iris image is classified based on fuzzy K-nearest neighbor (FKNN) and KNN classification. Test samples features are matched with the stored repository by various matching techniques such as max fuzzy vote, Euclidean distance, cosine and cityblock. The experiment is carried on standard database CASIA-IrisV3-Interval and result shows that multiclass approach with ROI segmented iris has better recognition accuracy using FKNN and KNN.
Reconstructing and repairing of corrupted or missing parts after object removal in digital video is an important trend in artwork restoration. Video inpainting is an active subject in video processing, which deals with the recovery of the corrupted or missing data. Most previous video inpainting approaches consume more time in extensive search to find the best patch to restore the damaged frames. In addition to that, most of them cannot handle the gradual and sudden illumination changes, dynamic background, full object occlusion, and object changes in scale. In this paper, we present a complete video inpainting framework without the extensive search process. The proposed framework consists of a segmentation stage based on low-resolution version and background subtraction. A background inpainting stage is applied to restore the damaged background regions after static or moving object removal based on the gray-level co-occurrence matrix (GLCM). A foreground inpainting stage is based on objects repository. GLCM is used to complete the moving occluded objects during the occlusion. The proposed method reduces the inpainting time from hours to a few seconds and maintains the spatial and temporal consistency. It works well when the background has clutter or fake motion, and it can handle the changes in object size and in posture. Moreover, it is able to handle full occlusion and illumination changes.
In recent days, the major concern for diabetic patients is foot ulcers. According to the survey, among 15 people among 100 are suffering from this foot ulcer. The wound or ulcer found which is found in diabetic patients consumes more time to heal, also required more conscious treatment. Foot ulcers may lead to deleterious danger condition and also may be the cause for loss of limb. By understanding this grim condition, this paper proposes Fractional-Order Darwinian Particle Swarm Optimization (FO-DPSO) technique for analyzing foot ulcer 2D color images. This paper deals with standard image processing, i.e. efficient segmentation using FO-DPSO algorithm and extracting textural features using Gray Level Co-occurrence Matrix (GLCM) technique. The whole effort projected results as accuracy of 91.2%, sensitivity of 100% and specificity as 96.7% for Naïve Bayes classifier and accuracy of 91.2%, sensitivity of 100% and sensitivity of 79.6% for Hoeffding tree classifier.
Context: Due to the change and advancement in technology, day by day the internet service usages are also increasing. Smartphones have become the necessity for every person these days. It is used to perform all basic daily activities such as calling, SMS, banking, gaming, entertainment, education, etc. Therefore, malware authors are developing new variants of malwares or malicious applications especially for monetary benefits.
Objective: Objective of this research paper is to develop a technique that can be used to detect malwares or malicious applications on the android devices that will work for all types of packed or encrypted malicious applications, which usually evade decompiling tools.
Method: In the proposed approach, visualization method is used for the detection of malware. In the first phase, application files are converted into images and then in second phase, texture feature of images are extracted using Grey Level Co-occurrence Matrix (GLCM). In the last phase, machine learning classification algorithms are used to classify the malicious and benign applications.
Results: The proposed approach is run on different datasets collected from various repositories. Different efficiency parameters are calculated and the proposed approach is compared with the existing approaches.
Conclusion: We have proposed a static technique for efficient detection of malwares. The proposed technique performs better than the existing technique.
Breast cancer is the leading cause of death in women. Early detection and early treatment can significantly reduce the breast cancer mortality. Texture features are widely used in classification problems, i.e., mainly for diagnostic purposes where the region of interest is delineated manually. It has not yet been considered for sonoelastographic segmentation. This paper proposes a method of segmenting the sonoelastographic breast images with optimum number of features from 32 features extracted from three different extraction methods: Gray Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Edge-Based Features. The image undergoes preprocessing by Sticks filter that improves the contrast and enhances the edges and emphasizes the tumor boundary. The features are extracted and then ranked according to the Sequential Forward Floating Selection (SFFS). The optimum number of ranked features is used for segmentation using k-means clustering. The segmented images are subjected to morphological processing that marks the tumor boundary. The overall accuracy is studied to investigate the effect of automated segmentation where the subset of first 10 ranked features provides an accuracy of 79%. The combined metric of overlap, over- and under-segmentation is 90%. The proposed work can also be considered for diagnostic purposes, along with the sonographic breast images.
Renal cysts are categorized as simple cysts and complex cysts. Simple cysts are harmless and complicated cysts are cancerous and leading to a dangerous situation. The study aims to implement a deep learning-based segmentation that uses the Renal images to segment the cyst, detecting the size of the cyst and assessing the state of cyst from the infected renal image. The automated method for segmenting renal cysts from MRI abdominal images is based on a U-net algorithm. The deep learning-based segmentation like U-net algorithm segmented the renal cyst. The characteristics of the segmented cyst were analyzed using the Statistical features extracted using GLCM algorithm. The machine learning classification is performed using the extracted GLCM features. Three machine learning classifiers such as Naïve Bayes, Hoeffding Tree and SVM are used in the proposed study. Naive Bayes and Hoeffding Tree achieved the highest accuracy of 98%. The SVM classifier achieved 96% of accuracy. This study proposed a new system to diagnose the renal cyst from MRI abdomen images. Our study focused on cyst segmentation, size detection, feature extraction and classification. The three-classification method suits best for classifying the renal cyst. Naïve Bayes and Hoeffding Tree classifier achieved the highest accuracy. The diameter of cyst size is measured using the blobs analysis method to predict the renal cyst at an earlier stage. Hence, the deep learning-based segmentation performed well in segmenting the renal cyst and the three classifiers achieved the highest accuracy, above 95%.
The coronavirus or COVID-19 infectious virus is the deadliest and potentially dangerous disease for humans. Radiologists frequently employ medical imaging tools to visualize complex internal structures as well as the functioning of the body. With precise diagnosis, it is possible to identify the infectious COVID-19 virus earlier, especially in an individual having no visible symptoms. For the diagnosis and early detection of the infectious COVID-19 virus, chest X-rays (CXRs) have been utilized which are available at https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database. Applying the gray-level co-occurrence matrix (GLCM) and gray-level run length matrix (GLRLM) feature extraction techniques, the features of the four classes (normal, lung opacity, viral pneumonia, and COVID-19) have been extracted and then classified by utilizing a machine learning (ML) classifier. Six distinct ML classifiers SMO (Sequential Minimal Optimization), Random Tree, MLP (Multi-Layer Perceptron), Linear SVM, Ensemble Classifier (Boosted Tree), and Bayes Net (Bayesian Network) with respective accuracy of 98.85%, 93.19%, 93.35%, 91.5%, 96.4%, and 96.454% are utilized to classify. The classifiers successfully distinguish between normal individuals, viral pneumonia-affected persons, lung opacity individuals, and COVID-19 virus-infected individuals who were considered for the study. These advanced technologies for coronavirus identification may be helpful in areas where access to skilled medical professionals and modern facilities is limited. Hence, as per the analysis, the study may be helpful in disease detection and classification. To classify the virus, radiologists’ second opinion can be quick and accurate in this urgent scenario.
Real-time classification of biological cells according to their 3D morphology is highly desired in a flow cytometer setting. Gray level co-occurrence matrix (GLCM) algorithm has been developed to extract feature parameters from measured diffraction images ,which are too complicated to coordinate with the real-time system for a large amount of calculation. An optimization of GLCM algorithm is provided based on correlation analysis of GLCM parameters. The results of GLCM analysis and subsequent classification demonstrate optimized method can lower the time complexity significantly without loss of classification accuracy.