Please login to be able to save your searches and receive alerts for new content matching your search criteria.
It has been hypothesized recently that core collapse supernovae are triggered by mildly relativistic jets following observations of radio properties of these explosions. Association of a jet, similar to a gamma-ray burst jet but only slower, allows shock acceleration of particles to high energy and non-thermal neutrino emission from a supernova. Detection of these high energy neutrinos in upcoming kilometer scale Cherenkov detectors may be the only direct way to probe inside these astrophysical phenomena as electromagnetic radiation is thermal and contains little information. Calculation of high energy neutrino signal from a simple and slow jet model buried inside the pre-supernova star is reviewed here. The detection prospect of these neutrinos in water or ice detector is also discussed in this brief review. Jetted core collapse supernovae in nearby galaxies may provide the strongest high energy neutrino signal from point sources.
Recent high-sensitivity observation of the nearby radio galaxy M87 has provided important insights into the central engine that drives the large-scale outflows seen in radio, optical and X-rays. This review summarizes the observational status achieved in the high energy (HE < 100 GeV) and very high energy (VHE > 100 GeV) gamma-ray domains, and discusses the theoretical progress in understanding the physical origin of this emission and its relation to the activity of the central black hole.
Recent observations of blazars at high energy (0.1–100 GeV) and very high energy (> 0.1 TeV) have provided important constraints on the intensity and spectrum of the diffuse extragalactic background light (EBL), shedding light on its main origin. Several issues remain open, however, in particular in the mid- and far-infrared bands and in the blazar emission at multi-TeV energies. This review summarizes the observational and theoretical progress in the study of the EBL with gamma-rays and the most promising future improvements, which are mainly expected from spectra in the multi-TeV range.
Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.
A synthesis of the present knowledge on gamma-ray emission from the magnetosphere of a rapidly rotating neutron star is presented, focusing on the electrodynamics of particle accelerators. The combined curvature, synchrotron, and inverse-Compton emission from ultra-relativistic positrons and electrons, which are created by two-photon and/or one-photon pair creation processes, or emitted from the neutron-star surface, provide us with essential information on the properties of the accelerator — electric potential drop along the magnetic field lines. A new accelerator model, which is a mixture of traditional inner gap and outer gap models, is also proposed, by solving the Poisson equation for the electrostatic potential together with the Boltzmann equations for particles and gamma-rays in the two-dimensional configuration and two-dimensional momentum spaces.
The extragalactic gamma-ray sky is dominated by two classes of sources: Gamma-Ray Bursts (GRBs) and radio loud active galactic nuclei whose jets are pointing at us (blazars). We believe that the radiation we receive from them originates from the transformation of bulk relativistic energy into random energy. Although the mechanisms to produce, collimate and accelerate the jets in these sources are uncertain, it is fruitful to compare the characteristics of both classes of sources in search of enlightening similarities. I will review some general characteristics of radio loud AGNs and GRBs and I will discuss the possibility that both classes of sources can work in the same way. Finally, I will discuss some recent exciting prospects to use blazars to put constraints on the cosmic IR-Optical-UV backgrounds, and to use GRBs as standard candles to measure the Universe.
LS I +61 303 is a puzzling object detected from radio up to very high-energy gamma-rays. Variability has recently been observed in its high-energy emission. The object is a binary system, with a compact object and a Be star as primary. The nature of the secondary and the origin of the gamma-ray emission are not clearly established at present. Recent VLBA radio data have been used to claim that the system is a Be/neutron star colliding wind binary, instead of a microquasar. We review the main views on the nature of LS I +61 303 and present results of 3D SPH simulations that can shed some light on the nature of the system. Our results support an accretion powered source, compatible with a microquasar interpretation.
The first three months of sky-survey operation with the Large Area Telescope (LAT) on board the Fermi satellite revealed 132 bright sources at |b| > 10° with test statistic greater than 100 (corresponding to about 10σ). Two methods, based on the CGRaBS, CRATES and BZCat catalogs, indicated high-confidence associations of 106 of these sources with known AGNs. This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely Centaurus A and NGC 1275, and 104 blazars consisting of 58 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and four blazars with unknown classification. Remarkably, the LBAS includes 10 high-energy-peaked BL Lacs. Only 33 of the sources, plus two at |b| < 10°, were previously detected with EGRET, probably due to variability. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. Other spectral and variability blazar properties are discussed. Some prominent Fermi-detected radiogalaxies are presented.
The environs of supermassive black holes are among the universe's most extreme phenomena. Understanding the physical processes occurring in the vicinity of black holes may provide the key to answer a number of fundamental astrophysical questions including the detectability of strong gravity effects, the formation and propagation of relativistic jets, the origin of the highest energy gamma-rays and cosmic rays, and the nature and evolution of the central engine in active galactic nuclei (AGN). As a step towards this direction, this paper reviews some of the progress achieved in the field based on observations in the very high energy domain. It particularly focuses on nonthermal particle acceleration and emission processes that may occur in the rotating magnetospheres originating from accreting, supermassive black hole systems. Topics covered include direct electric field acceleration in the black hole's magnetosphere, ultra-high energy cosmic ray production, Blandford–Znajek mechanism, centrifugal acceleration and magnetic reconnection, along with the relevant efficiency constraints imposed by interactions with matter, radiation and fields. By way of application, a detailed discussion of well-known sources (Sgr A*; Cen A; M87; NGC1399) is presented.
Here, we briefly review possible indirect effects of dark matter (DM) of the universe. It includes effects in cosmic rays (CR): first of all, the positron excess at ∼500GeV and possible electron–positron excess at 1–1.5TeV. We tell that the main and least model-dependent constraint on such possible interpretation of CR effects goes from gamma-ray background. Even ordinary e+e− mode of DM decay or annihilation produces prompt photons (FSR) so much that it leads to contradiction with data on cosmic gamma-rays. We present our attempts to possibly avoid gamma-ray constraint. They concern with peculiarities of both space distribution of DM and their physics. The latter involves complications of decay/annihilation modes of DM, modifications of Lagrangian of DM-ordinary matter interaction and inclusion of mode with identical fermions in final state. In this way, no possibilities to suppress were found except, possibly, the mode with identical fermions. While the case of spatial distribution variation allows achieving consistency between different data. Also, we consider stable form of DM which can interact with baryons. We show which constraint such DM candidate can get from the damping effect in plasma during large-scale structure (LSS) formation in comparison with other existing constraints.
Here we present results from an in-depth search for pulsed emission from both close binary systems AE Aquarii (AE Aqr) and AR Scorpii (AR Sco) in radio and gamma-ray energies. Both systems were observed recently with the MeerKAT telescope, and combined with this, we utilized the combined 10 year Pass 8 Fermi-LAT dataset to search for pulsed gamma-ray emission from both white dwarfs in these systems. Pulsed emission was detected in MeerKAT data from both these close binary systems at a period that is at, or close to, the spin period of the white dwarf. The search for pulsed gamma-ray emission revealed pulsed emission at the spin period of the white dwarf of AE Aqr after selecting data sets with duration of 2 weeks that show excess emission above the 2 σ significance level. Braking these two-week sets up in 10 minute intervals and stacking the power spectra revealed pulsed emission at both the spin (P * = 33.08 s) and its associated first harmonic (P1 = 16.54 s). A full 10 year analysis of the AR Sco data revealed pulsed emission at the spin period/beat period of the white dwarf, albeit at a lower significance level. Several control analyses were performed to verify the authenticity of the emission in both radio and gamma-rays, which will be discussed in the main text. The results of this study definitely reveal that both white dwarfs in these systems contain a particle accelerator that accelerates charged particles to high energies resulting in associated non-thermal radio and gamma-ray emission.