Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    CLASSIFICATION OF LARGE MICROARRAY DATASETS USING FAST RANDOM FOREST CONSTRUCTION

    Random forest is an ensemble classification algorithm. It performs well when most predictive variables are noisy and can be used when the number of variables is much larger than the number of observations. The use of bootstrap samples and restricted subsets of attributes makes it more powerful than simple ensembles of trees. The main advantage of a random forest classifier is its explanatory power: it measures variable importance or impact of each factor on a predicted class label. These characteristics make the algorithm ideal for microarray data. It was shown to build models with high accuracy when tested on high-dimensional microarray datasets. Current implementations of random forest in the machine learning and statistics community, however, limit its usability for mining over large datasets, as they require that the entire dataset remains permanently in memory. We propose a new framework, an optimized implementation of a random forest classifier, which addresses specific properties of microarray data, takes computational complexity of a decision tree algorithm into consideration, and shows excellent computing performance while preserving predictive accuracy. The implementation is based on reducing overlapping computations and eliminating dependency on the size of main memory. The implementation's excellent computational performance makes the algorithm useful for interactive data analyses and data mining.

  • articleNo Access

    INTEGRATING OBJECTIVE GENE-BRAIN-BEHAVIOR MARKERS OF PSYCHIATRIC DISORDERS

    There is little consensus about which objective markers should be used to assess major psychiatric disorders, and predict/evaluate treatment response for these disorders. Clinical practice relies instead on subjective signs and symptoms, such that there is a "translational gap" between research findings and clinical practice. This gap arises from: a) a lack of integrative theoretical models which provide a basis for understanding links between gene-brain-behavior mechanisms and clinical entities; b) the reliance on studying one measure at a time so that linkages between markers are their specificity are not established; and c) the lack of a definitive understanding of what constitutes normative function. Here, we draw on a standardized methodology for acquiring multiple sources of genomic, brain and behavioral data in the same subjects, to propose candidate markers of selected psychiatric disorders: depression, post-traumatic stress disorder, schizophrenia, attention-deficit/hyperactivity disorder and dementia disorders. This methodology has been used to establish a standardized international database which provides a comprehensive framework and the basis for testing hypotheses derived from an integrative theoretical model of the brain. Using this normative base, we present preliminary findings for a number of disorders in relation to the proposed markers. Establishing these objective markers will be the first step towards determining their sensitivity, specificity and treatment prediction in individual patients.