Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Resonance and Bragg band frequencies coupling of lossy sonic crystals based on nonuniform resonators and lattice

    Traditional sonic crystals (SCs) are based on scatterers or resonators distributed periodically that attenuate sound waves in different bands of frequencies. Recently, we adopted an improved design of SC, namely, the gradient-based sonic crystal (GBSC), designed with a gradient in the geometric parameters using nonuniform resonators and lattices. The finite element (FE) study on the GBSCs indicated that the gradient induces better attenuation than the traditional periodic SCs. This work is an extension of our previous work with experimental and new FE studies on different parameters of the GBSC in an attempt to improve the attenuation of the GBSCs. It was found that the gradient of the geometry enhances the Bragg scattering and resonance in the array, creating a large number of band frequencies. When designed properly by manipulating their gradient, GBSCs were found to target particular frequency bands over other GBSCs of identical filling ratios by coupling the resonant frequencies or the resonant and Bragg frequencies. It was also found that the thickness of the GBSC can be reduced by removing some specific columns from the array without significantly affecting the attenuation by the GBSC. Similarly, it was also found that the relative position of the resonator columns in a GBSC affects the band frequencies, and swapping the columns may also improve the attenuation by the GBSC.

  • articleNo Access

    Ultrathin reflective acoustic metasurface based on the synergetic coupling of resonant cavity and labyrinthine beams

    We propose a reflective acoustic metasurface by taking advantage of the synergetic coupling of two kinds of widely used elements, the resonant cavity and the labyrinthine beam. A full 2π phase shift range can be obtained by varying the neck width. The structure manipulates the reflective waves on a very deep subwavelength scale with the thickness being only 1/50 of the wavelength, which eliminates the enormous obstacle in low frequency applications. The synergetic coupling of the resonant cavity and the inner labyrinthine beams provide a useful guide for the design of acoustic metasurfaces.

  • articleNo Access

    Realizing the perfect sound absorption and broadening effective band using porous material and micro-perforated plate

    The noise attenuation ability of a single material or structure, especially for low-frequency noise, is limited by its thickness. Aiming to achieve high-efficiency noise attenuation at low frequencies, this paper proposes the methods of porous material filling and micro-perforated plate (MPP) embedding to design a perfect sound absorber at different frequencies using the under-loss Helmholtz resonator (HR). Based on the transfer matrix method, the theoretical calculation models of the sound absorption coefficients of the HR, Helmholtz resonator with porous material (HRP), and Helmholtz resonator with micro-perforated plates (HRM) are constructed. Based on the theoretical models, the under-loss absorber HR1 with the peak absorption at 243 Hz, and the HRP and HRM with perfect absorption at 212 Hz and 157 Hz are designed, respectively. The impedance analysis and complex frequency plane method are used to analyze the sound absorption mechanisms of the HR1, HRP, and HRM. The accuracy of the theoretical model is verified by the finite element method. Finally, the three acoustic absorbers are manufactured using 3D printing technology, and the absorption coefficients are evaluated experimentally. The experimental results show that the HR1 has a high working frequency at 245 Hz and a narrow bandwidth of high-efficiency sound absorption (α>0.8), which is only 12 Hz. The working frequency of the HRP is 214 Hz, and its high-efficiency sound absorption bandwidth is 54 Hz. The HRP has the lowest working frequency at 157 Hz and the widest high-efficiency sound absorption bandwidth of 58 Hz among the three absorbers. The research results presented in this paper provide a reference for the realization of low-frequency broadband noise attenuation designs and have certain application potential in noise control.

  • articleNo Access

    A Ring Silencer Design for Reducing Noise of Axial Fan

    In this paper, a ring silencer design for reducing the noise of axial fans is presented. The noise sources on axial fans are usually caused by the fluctuating pressure distribution on the surface of fan blade. Most of the sources are near the trailing edge of blades or boundary region of blades. The ideation of proposed design is based on the principle of Helmholtz resonator for reducing the noise around the fan. The electro-acoustic analogy of this design is presented and simply discussed. Experimental measurement is carried out to evaluate the proposed design for reducing the axial fan noise. The result of experiment indicated that the ring silencer achieved 17 dB in blade passing frequency and 10 dB in other broadband frequency of power spectrum level.

  • articleNo Access

    Acoustical Study of a Lossy Gradient-Based Sonic Crystal Using Acoustic Beamforming

    Sonic crystals (SCs) are unique periodic structures designed to attenuate acoustic waves in tunable frequency bands known as bandgaps. Though previous works on conventional uniform SCs show good insertion loss (IL) inside the bandgaps, this work is focused on widening their bandgaps and achieving better IL inside the bandgaps by using a gradient-based sonic crystal (GBSC). The GBSC applies property gradient to the conventional SC array by varying its basic properties, i.e., the distance between the scatterers/resonators (lattice constant), and resonator dimensions between the columns and hence the name GBSC. The design of the GBSC is backed by the results of acoustic beamforming experiments conducted over the uniform SCs of hollow scatterers and Helmholtz resonators (HRs) having two-dimensional (2D) periodicity prepared by using Polyvinyl chloride (PVC) pipes without any property gradient and their respective 2D finite element (FE) studies. The experimental and FE simulation results of the uniform SCs were found to be in good agreement and therefore, the GBSC was modeled and analyzed using FE method considering the viscothermal losses inside the resonators. The results indicated that the property gradient improves both Bragg scattering and Helmholtz resonance compared to that of the uniform SCs and therefore, the GBSC exhibits wider attenuation gaps and higher attenuation levels. An array of 30 microphones was used to conduct acoustic beamforming experiments on the uniform SCs. Beamforming was found to be an advanced and fast method to perform quick measurements on the SCs.

  • chapterNo Access

    Effects of Shapes on the Resonance Frequency of Helmholtz Resonators by Numerical Method

    Design for Helmholtz resonators is a classic topic in theory and practical problems, which have extensive application in theory and practical application work. This problem is still far from perfectly solved by analytical methods although there are many formulations have been proposed, hi this paper, we show a verified FEM numerical method for design computation of Helmholtz resonator. With comparisons between the data front experiments and the numerical results, we can conclude this numerical scheme has good accuracy and is applicable for general geometry configuration, which can be a good alternative for complex resonator design problems. Because of the high accuracy, we believe that this method can also be used for verification of future new approximate formulation.