Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The focus of this study is to synthesize a new calixarene derivative namely calix[6]arene (C21) and to test its performance as corrosion inhibitor of C38 steel in molar HCl at 308 K. Polarization and weight loss measurements were used. Weight loss tests show that C21 retards until to stop corrosion phenomenon at 5 × 10-5M. C21 is an excellent inhibitor and its inhibition efficiency increases with its concentration to reach 100% since 5 × 10-5M. Polarization curves revealed that C21 affects both cathodic and anodic domains by decreasing current densities and then it may be classified as a mixed type inhibitor. The calixarene tested is adsorbed on the surface according to the Langmuir adsorption isotherm. Free enthalpy of adsorption reveals that C21 acts from chemisorption onto the steel surface.
The inhibition effect of synthesized N′-(phenylmethylidene)-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazides, N′-(4-methylphenylmethylidene)-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazides, and N′-(4-methoxyphenylmethylidene)-2-(2-methyl-1H-benzimidazol-1-yl)acetohydrazides on the corrosion behaviour of N80 steel in 15% hydrochloric acid solution was investigated using weight loss, potentiostatic polarization and electrochemical impedance spectroscopy methods. The inhibition efficiency increased as the concentration of the inhibitors was increased. The effect of temperature on corrosion inhibition was investigated by weight loss method and thermodynamic parameters were calculated. Potentiodynamic polarization measurements show that all the three studied inhibitors act as mixed inhibitor. The adsorption of inhibitors on N80 steel surface obeys Langmuir adsorption isotherm. The structure of inhibitors was optimized using semiemperical AM1 method. Theoretical parameters such as the highest occupied molecular orbital (EHOMO), lowest unoccupied molecular orbital (ELUMO) energy levels, energy gap (ΔE = ELUMO - EHOMO), dipole moment (μ), global hardness (γ), softness (σ), binding energy, molecular surface area and the fraction of electrons transferred (ΔN) were calculated and the adsorption mechanism was discussed. Scanning electron microscopy was used to characterize the surface marphology of the N80 steel.