You do not have any saved searches
The combination of data from multiple sensors, also known as sensor fusion or data fusion, is a key aspect in the design of autonomous robots. In particular, algorithms able to accommodate sensor fusion techniques enable increased accuracy, and are more resilient against the malfunction of individual sensors. The development of algorithms for autonomous navigation, mapping and localization have seen big advancements over the past two decades. Nonetheless, challenges remain in developing robust solutions for accurate localization in dense urban environments, where the so-called last-mile delivery occurs. In these scenarios, local motion estimation is combined with the matching of real-time data with a detailed pre-built map. In this paper, we utilize data gathered with an autonomous delivery robot to compare different sensor fusion techniques and evaluate which are the algorithms providing the highest accuracy depending on the environment. The techniques we analyze and propose in this paper utilize 3D lidar data, inertial data, GNSS data and wheel encoder readings. We show how lidar scan matching combined with other sensor data can be used to increase the accuracy of the robot localization and, in consequence, its navigation. Moreover, we propose a strategy to reduce the impact on navigation performance when a change in the environment renders map data invalid or part of the available map is corrupted.
Intelligent unmanned systems have important applications, such as pesticide-spraying in agriculture, robot-based warehouse management systems, and missile-firing drones. The underlying assumption behind all autonomy is that the agent knows its relative position or egomotion with respect to some reference or scene. There exist thousands of localization systems in the literature. These localization systems use various combinations of sensors and algorithms, such as visual/visual-inertial SLAM, to achieve robust localization. The majority of the methods use one or more sensors from LIDAR, camera, IMU, UWB, GPS, compass, tracking system, etc. This survey presents a systematic review and analysis of published algorithms and techniques chronologically, and we introduce various highly impactful works. We provide insightful investigation and taxonomy on sensory data forming principle, feature association principle, egomotion estimation formation, and fusion model for each type of system. At last, some open problems and directions for future research are also included. We aim to survey the literature comprehensively to provide a complete understanding of localization methodologies, performance, advantages and limitations, and evaluations of various methods, shedding some light for future research.
In a recent feature article in this journal, coauthored by Gert van der Heijden, I described the static-dynamic analogy and its role in understanding the localized post-buckling of shell-like structures, looking exclusively at integrable systems. We showed the true significance of the Maxwell energy criterion load in predicting the sudden onset of "shock sensitivity" to lateral disturbances. The present paper extends the survey to cover nonintegrable systems, such as thin compressed shells. These exhibit spatial chaos, generating a multiplicity of localized paths (and escape routes) with complex snaking and laddering phenomena. The final theoretical contribution shows how these concepts relate to the response and energy barriers of an axially compressed cylindrical shell.
After surveying NASA's current shell-testing programme, a new nondestructive technique is proposed to estimate the "shock sensitivity" of a laboratory specimen that is in a compressed metastable state before buckling. A probe is used to measure the nonlinear load-deflection characteristic under a rigidly applied lateral displacement. Sensing the passive resisting force, it can be plotted in real time against the displacement, displaying an equilibrium path along which the force rises to a maximum and then decreases to zero: having reached the free state of the shell that forms a mountain-pass in the potential energy. The area under this graph gives the energy barrier against lateral shocks. The test is repeated at different levels of the overall compression. If a symmetry-breaking bifurcation is encountered on the path, computer simulations show how this can be suppressed by a controlled secondary probe tuned to deliver zero force on the shell.
We give a pedagogical introduction to the study of supersymmetric partition functions of 3D 𝒩=2 supersymmetric Chern–Simons-matter theories (with an R-symmetry) on half-BPS closed three-manifolds — including S3, S2×S1, and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D 𝒩=2 supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.
Micro unmanned aerial vehicles (UAVs) are promising to play more and more important roles in both civilian and military activities. Currently, the navigation of UAVs is critically dependent on the localization service provided by the Global Positioning System (GPS), which suffers from the multipath effect and blockage of line-of-sight, and fails to work in an indoor, forest or urban environment. In this paper, we establish a localization system for quadcopters based on ultra-wideband (UWB) range measurements. To achieve the localization, a UWB module is installed on the quadcopter to actively send ranging requests to some fixed UWB modules at known positions (anchors). Once a distance is obtained, it is calibrated first and then goes through outlier detection before being fed to a localization algorithm. The localization algorithm is initialized by trilateration and sustained by the extended Kalman filter (EKF). The position and velocity estimates produced by the algorithm will be further fed to the control loop to aid the navigation of the quadcopter. Various flight tests in different environments have been conducted to validate the performance of UWB ranging and localization algorithm.
In this review, we give a brief introduction on the aspects of some extra dimension models and the five-dimensional thick brane models in extended theories of gravity. First, we briey introduce the Kaluza–Klein theory, the domain wall model, the large extra dimension model, and the warped extra dimension models. Then some thick brane solutions in extended theories of gravity are reviewed. Finally, localization of bulk matter fields on thick branes is discussed.
A strategy for working with incomplete information is called competitive if it solves each problem instance at a cost not exceeding the cost of an optimal solution (with full information available), times a constant. This paper strives to demonstrate why competitive strategies are useful for the design of autonomous robots. They guarantee a good worst-case behaviour, they are easy to implement, and they allow to deal with some problems whose optimal solution would be NP-hard. We survey competitive strategies for the following problems. How to find a door in a long wall, how to find a goal in an unknown environment, how to find a point from which an unknown environment is fully visible, and how to determine a robot's location on a known map from local visibility.
A variety of agents have now been identified that can selectively sensitize neoplastic cells and other tissues to light. This review classifies a group of photosensitizers according to their initial affinity for specific sub-cellular organelles in vitro, and describes the consequences of each major localization site with regard to direct tumor cell kill. Considerations pertinent to determinants of efficacy in animal models and in clinical applications are also pointed out. One consequence of photodynamic therapy leading to cell death involves photodamage to anti-apoptotic members of the Bcl-2. These proteins are located on the endoplasmic reticulum and mitochondrial membranes. Direct mitochondrial photodamage can also initiate apoptosis. Agents that target lysosomes can bring about apoptotic death via an indirect route, but this does not appear to limit their usefulness. Agents that target the plasma membrane can re-localize to the cytosol during irradiation and cause photodamage to elements of the apoptotic process, resulting in necrosis. Implications of these findings are discussed.
In this paper, we propose a new approach for fault tolerant localization using multi-sensors data fusion for a unicycle-type mobile robot. The main contribution of this paper is a new architecture proposal for fault diagnosis and reconfiguration for mobile robot localization using multi-sensors data fusion and the duplication/comparison approach. Four different sensors usually embedded in mobile robots (Camera, IMU, GPS, and Odometer) are considered, while six different sensors couples combinations are used for sensor data fusion and the duplication of the localization and estimation system. In order to reach this aim, three different filters (EKF, SVSF, and ASVSF) have been proposed and compared. For each selected filter, a comparison mechanism is then introduced to compute different residuals by comparing the estimated robot position for each sensor couples separately. Faults are then detected using the structural residual diagnosis method. This approach assumes the occurrence of a single fault at a given time. A reconfiguration mechanism is then applied by selected the healthy sensors couple and their corresponding fusion filter. Several scenarios are considered for navigation-based fault tolerant localization approaches. Simulation results are presented to illustrate the advantage and performance of the proposed architecture. The proposed solutions are implemented and validated successfully using the V-REP simulator.
In this paper, we propose a method to address the problem of scale uncertainty in monocular visual odometry (VO), which includes scale ambiguity and scale drift, using distance measurements from a single ultra-wideband (UWB) anchor. A variant of Levenberg–Marquardt (LM) nonlinear least squares regression method is proposed to rectify unscaled position data from monocular odometry with 1D point-to-point distance measurements. As a loosely-coupled approach, our method is flexible in that each input block can be replaced with one’s preferred choices for monocular odometry/SLAM algorithm and UWB sensor. Furthermore, we do not require the location of the UWB anchor as prior knowledge and will estimate both scale and anchor location simultaneously. However, it is noted that a good initial guess for anchor position can result in more accurate scale estimation. The performance of our method is compared with state-of-the-art on both public datasets and real-life experiments.
Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5min to 15min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an O-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.
Let D be an integral domain with quotient field K, R be an overring of D, X be an indeterminate over R and E be a subset of K. We consider the ring of D-valuedR-polynomials onE, denoted by IntR(E,D), formed by the polynomials f∈R[X] such that f(a)∈D for each a∈E, that is, IntR(E,D):={f∈R[X]:f(E)⊆D}. In this paper, we study localization properties, local freeness and faithful flatness of IntR(E,D) over various classes of locally essential domains. In particular, we extend some known results to more general settings.
The sophistication of recent experimental procedures has made it possible to detect experimentally the so-called Quantum Jumps (QJ), i.e. the stop and restart of the wave function as a real phenomenon. In this work, we connect this experimental evidence to a foundational interpretation of QM, based on an a-temporal vacuum. In that picture, the QJ is a localization process, defined as the time-symmetric action of a self-conjugate projection operator. The compatibility of these discontinuous processes with the Theory of Relativity is demonstrated using the Bohm representation of quantum mechanics.
The CGMV method allows for the general discussion of localization properties for the states of a one-dimensional quantum walk, both in the case of the integers and in the case of the nonnegative integers. Using this method we classify, according to such localization properties, all the quantum walks with one defect at the origin, providing explicit expressions for the asymptotic return probabilities to the origin.
We answer multiple open questions concerning lifting of idempotents that appear in the literature. Most of the results are obtained by constructing explicit counter-examples. For instance, we provide a ring R for which idempotents lift modulo the Jacobson radical J(R), but idempotents do not lift modulo J(𝕄2(R)). Thus, the property “idempotents lift modulo the Jacobson radical” is not a Morita invariant. We also prove that if I and J are ideals of R for which idempotents lift (even strongly), then it can be the case that idempotents do not lift over I+J. On the positive side, if I and J are enabling ideals in R, then I+J is also an enabling ideal. We show that if I⊴R is (weakly) enabling in R, then I[t] is not necessarily (weakly) enabling in R[t] while I⟦t⟧ is (weakly) enabling in R⟦t⟧. The latter result is a special case of a more general theorem about completions. Finally, we give examples showing that conjugate idempotents are not necessarily related by a string of perspectivities.
We study weight modules of the Lie algebra W2 of vector fields on ℂ2. A classification of all simple weight modules of W2 with a uniformly bounded set of weight multiplicities is provided. To achieve this classification, we introduce a new family of generalized tensor Wn-modules. Our classification result is an important step in the classification of all simple weight Wn-modules with finite weight multiplicities.
Accurate and reliable localization is a prerequisite for autonomously performing high-level tasks with humanoid robots. In this paper, we present a probabilistic localization method for humanoid robots navigating in arbitrary complex indoor environments using only onboard sensing, which is a challenging task. Inaccurate motion execution of biped robots leads to an uncertain estimate of odometry, and their limited payload constrains perception to observations from lightweight and typically noisy sensors. Additionally, humanoids do not walk on flat ground only and perform a swaying motion while walking, which requires estimating a full 6D torso pose. We apply Monte Carlo localization to globally determine and track a humanoid's 6D pose in a given 3D world model, which may contain multiple levels and staircases. We present an observation model to integrate range measurements from a laser scanner or a depth camera as well as attitude data and information from the joint encoders. To increase the localization accuracy, e.g., while climbing stairs, we propose a further observation model and additionally use monocular vision data in an improved proposal distribution. We demonstrate the effectiveness of our methods in extensive real-world experiments with a Nao humanoid. As the experiments illustrate, the robot is able to globally localize itself and accurately track its 6D pose while walking and climbing stairs.
b-Bilene hydrochlorides are shown to be improved intermediates for the synthesis of metallo-isoporphyrins in enhanced yields (28% vs. 6%). Several new diamagnetic zinc(II) and a novel paramagnetic copper(II) isoporphyrin salts were also obtained using this approach. Metal-free isoporphyrins were also isolated. In vitro studies using human carcinoma HEp2 cells show that all metallo-isoporphyrins accumulate within cells and localize partially in the mitochondria. The zinc-isoporphyrins were found to be moderately phototoxic while the copper complex showed the lowest phototoxicity, maybe as a result of its paramagnetic nature.
Accurate localization is the key component in intelligent vehicles for navigation. With the rapid development especially in urban area, the increasing high-rise buildings results in urban canyon and road network has become more complex. These affect the vehicle navigation performance particularly in the event of poor Global Positioning System (GPS) signal. Therefore, it is essential to develop a perceptive localization system to overcome this problem. This paper proposes a localization approach that exhibits the advantages of Visual Odometry (VO) in low-cost data fusion to reduce vehicle localization error and improve its response rate in path selection. The data used are sourced from camera as visual sensor, low-cost GPS and free digital map from OpenStreetMap. These data are fused by Particle filter (PF) where our method estimates the curvature similarity score of VO trajectory curve with candidate ways extracted from the map. We evaluate the robustness of our proposed approach with three types of GPS errors such as random noise, biased noise and GPS signal loss in an instance of ambiguous road decision. Our results show that this method is able to detect and select the correct path simultaneously which contributes to a swift path planning.
We present homotopy theoretic and geometric interpretations of the Kane–Mele invariant for gapped fermionic quantum systems in three dimensions with time-reversal symmetry. We show that the invariant is related to a certain 4-equivalence which lends it an interpretation as an obstruction to a block decomposition of the sewing matrix up to non-equivariant homotopy. We prove a Mayer–Vietoris Theorem for manifolds with ℤ2-actions which intertwines Real and ℤ2-equivariant de Rham cohomology groups, and apply it to derive a new localization formula for the Kane–Mele invariant. This provides a unified cohomological explanation for the equivalence between the discrete Pfaffian formula and the known local geometric computations of the index for periodic lattice systems. We build on the relation between the Kane–Mele invariant and the theory of bundle gerbes with ℤ2-actions to obtain geometric refinements of this obstruction and localization technique. In the preliminary part we review the Freed–Moore theory of band insulators on Galilean spacetimes with emphasis on geometric constructions, and present a bottom-up approach to time-reversal symmetric topological phases.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.