Please login to be able to save your searches and receive alerts for new content matching your search criteria.
A preprocessing stage in every speech/music applications including audio/speech separation, speech/speaker recognition and audio/genre transcription task is inevitable. The importance of such pre-processing stage is originated from the requisite of determining each frame of the given signal is belonged to which classes, namely: speech only, music only or speech/music mixture. Such classification can significantly decrease the computational burden due to exhaustive search commonly introduced as a problem in model-based speech recognition or separation as well as music transcription scenarios. In this paper, we present a new method to separate mixed type audio frames based on support vector machine (SVM) and neural network. We present a feature type selection algorithm which seeks for the most appropriate features to discriminate possible classes (hypotheses) on the mixed signal. We also propose features based on eigen-decomposition on the mixed frame. Experimental results demonstrate that the proposed features together with the selected audio classifiers achieve acceptable classification results. From the experimental results, it is observed that the proposed system outperforms other classification systems including k-nearest neighbor (k-NN) and multi-layer perceptron (MLP).
In this study, the effectiveness of an SPAD-502 portable chlorophyll (Chl) meter was evaluated for estimating the Chl contents in leaves of some medicinal and aromatic plants. To predict the individual chlorophyll concentration indexes of St. John’s wort (Hypericum perforatum L.), mint (Mentha angustifolia L.), melissa (Melissa officinalis L.), thyme (Thymus sp.), and echinacea (Echinacea purpurea L.), models were developed using SPAD value. Multi-layer perceptron (MLP), adaptive neuro fuzzy inference system (ANFIS), and general regression neural network (GRNN) were used for determining the chlorophyll concentration indexes.
Inertial navigation system (INS) is often integrated with satellite navigation systems to achieve the required precision at high-speed applications. In global navigation system (GPS)/INS integration systems, GPS outages are unavoidable and a severe challenge. Moreover, because of the usage of low-cost microelectromechanical sensors (MEMS) with noisy outputs, the INS will get diverged during GPS outages, and that is why navigation precision severely decreases in commercial applications. In this paper, we improve GPS/INS integration system during GPS outages using extended Kalman filter (EKF) and artificial intelligence (AI) together. In this integration algorithm, the AI receives the angular rates and specific forces from the inertial measurement unit (IMU) and velocity from the INS at t and t−1. Therefore, the AI has positioning and timing data of the INS. While the GPS signals are available, the output of the AI is compared with the GPS increment; so that the AI is trained. During GPS outages, the AI will practically play the GPS role. Thus, it can prevent the divergence of the GPS/INS integration system in GPS-denied environments. Furthermore, we utilize neural networks (NNs) as an AI module in five different types: multi-layer perceptron (MLP) NN, radial basis function (RBF) NN, wavelet NN, support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS). To evaluate the proposed approach, we utilize a real dataset that has been gathered by a mini-airplane. The results demonstrate that the proposed approach outperforms the INS and GPS/INS integration systems with the EKF during GPS outages. Meanwhile, the ANFIS also reached more than 47.77% precision compared to the traditional method.