Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    AUDIO CLASSIFICATION OF MUSIC/SPEECH MIXED SIGNALS USING SINUSOIDAL MODELING WITH SVM AND NEURAL NETWORK APPROACH

    A preprocessing stage in every speech/music applications including audio/speech separation, speech/speaker recognition and audio/genre transcription task is inevitable. The importance of such pre-processing stage is originated from the requisite of determining each frame of the given signal is belonged to which classes, namely: speech only, music only or speech/music mixture. Such classification can significantly decrease the computational burden due to exhaustive search commonly introduced as a problem in model-based speech recognition or separation as well as music transcription scenarios. In this paper, we present a new method to separate mixed type audio frames based on support vector machine (SVM) and neural network. We present a feature type selection algorithm which seeks for the most appropriate features to discriminate possible classes (hypotheses) on the mixed signal. We also propose features based on eigen-decomposition on the mixed frame. Experimental results demonstrate that the proposed features together with the selected audio classifiers achieve acceptable classification results. From the experimental results, it is observed that the proposed system outperforms other classification systems including k-nearest neighbor (k-NN) and multi-layer perceptron (MLP).

  • articleNo Access

    Estimation of Chlorophyll Concentration Index at Leaves using Artificial Neural Networks

    In this study, the effectiveness of an SPAD-502 portable chlorophyll (Chl) meter was evaluated for estimating the Chl contents in leaves of some medicinal and aromatic plants. To predict the individual chlorophyll concentration indexes of St. John’s wort (Hypericum perforatum L.), mint (Mentha angustifolia L.), melissa (Melissa officinalis L.), thyme (Thymus sp.), and echinacea (Echinacea purpurea L.), models were developed using SPAD value. Multi-layer perceptron (MLP), adaptive neuro fuzzy inference system (ANFIS), and general regression neural network (GRNN) were used for determining the chlorophyll concentration indexes.

  • articleFree Access

    An Improved GPS/INS Integration Based on EKF and AI During GPS Outages

    Inertial navigation system (INS) is often integrated with satellite navigation systems to achieve the required precision at high-speed applications. In global navigation system (GPS)/INS integration systems, GPS outages are unavoidable and a severe challenge. Moreover, because of the usage of low-cost microelectromechanical sensors (MEMS) with noisy outputs, the INS will get diverged during GPS outages, and that is why navigation precision severely decreases in commercial applications. In this paper, we improve GPS/INS integration system during GPS outages using extended Kalman filter (EKF) and artificial intelligence (AI) together. In this integration algorithm, the AI receives the angular rates and specific forces from the inertial measurement unit (IMU) and velocity from the INS at t and t1. Therefore, the AI has positioning and timing data of the INS. While the GPS signals are available, the output of the AI is compared with the GPS increment; so that the AI is trained. During GPS outages, the AI will practically play the GPS role. Thus, it can prevent the divergence of the GPS/INS integration system in GPS-denied environments. Furthermore, we utilize neural networks (NNs) as an AI module in five different types: multi-layer perceptron (MLP) NN, radial basis function (RBF) NN, wavelet NN, support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS). To evaluate the proposed approach, we utilize a real dataset that has been gathered by a mini-airplane. The results demonstrate that the proposed approach outperforms the INS and GPS/INS integration systems with the EKF during GPS outages. Meanwhile, the ANFIS also reached more than 47.77% precision compared to the traditional method.

  • articleNo Access

    SUPPORT VECTOR MACHINE BASED AUTOMATIC CLASSIFICATION OF HUMAN BRAIN USING MR IMAGE FEATURES

    This paper proposes an intelligent classification technique to identify two categories of MRI volume data as normal and abnormal. The manual interpretation of MRI slices based on visual examination by radiologist/physician may lead to incorrect diagnosis when a large number of MRIs are analyzed. In this work, the textural features are extracted from the MR data of patients and these features are used to classify a patient as belonging to normal (healthy brain) or abnormal (tumor brain). The categorization is obtained using various classifiers such as support vector machine (SVM), radial basis function, multilayer perceptron and k-nearest neighbor. The performance of these classifiers are analyzed and a quantitative indication of how better the SVM performance is when compared with other classifiers is presented. In intelligent computer aided health care system, the proposed classification system using SVM classifier can be used to assist the physician for accurate diagnosis.

  • articleNo Access

    MLP Modeling and Prediction of IP Subnet Packets Forwarding Performance

    In IP networks, packets forwarding performance can be improved by adding more nodes and dividing the network into smaller segments. Being able to measure and predict traffic flows to direct to a given segment can be crucial in respecting traffic shaping, scheduling and QoS. This paper proposes to model network packets forwarding performance for optimization and prediction purposes by using multi-layer feed-forward neural network model that uses sigmoid functions to activate the hidden nodes. Gradient descent technique has been considered to optimize and enhance the MLP accuracy. Simulations of MPL neurons training stages pointed out a relative improvement of the forwarding process when network posses a larger density of neurons. Numerical results validated our theoretical analysis and confirmed that to enhance the forwarding process, it is necessary to divide the network into small segments by optimizing resources allocation.