The (Ru1-xNbx)Sr2(Eu1.5Ce0.5)Cu2Oz(0 ≤ x ≤ 0.5) compounds have been synthesized and characterized by X-ray diffraction, electric transport, and magnetic susceptibility measurements. We find that there is no significant change in the superconducting transition temperature when Nb is substituted for Ru up to x = 0.5. Unlike RuSr2(Eu1.5Ce0.5)Cu2Oz, bulk Meissner effect is observed in the field-cooled magnetization measurements of the Nb doped samples. The experimental results are discussed in conjunction with a reduction of the internal field caused by the Nb substitution for Ru, based on the spontaneous vortex phase interpretation.
The discovery of superconductivity in palladium-hydrogen (PdH) and its isotopes (D,T) at low temperature, brought about extensive study of this system. These studies have shown that the critical transition temperature is a function of the H concentration x in the PdHx system with Tc=9K for x=1. In the last decade we defined a room temperature and room pressure technique to load H and maintain stable the stoichiometry in Pd lattice at levels higher than unit. Several magnetic and electric transport measurements have been performed showing transition temperature in the range of [18K< Tc < 273K]. Moreover in a typical critical current measurement configuration, current density greater than 6*104Acm-2⊐ has been measured at liquid nitrogen temperature. The 263.5K superconducting transition after a week of sample storage at room pressure and temperature, decreased down to 261.5K and after 2 years it became 160.5K, demonstrating a fairly good stability of the sample. Evidences of the flux exclusion (ZFC measurements) and the flux expulsion (FC measurements) have been found at very high transition temperature (Tc=235K) for the PdH system.
Is superconductivity associated with a lowering or an increase of the kinetic energy of the charge carriers? Conventional BCS theory predicts that the kinetic energy of carriers increases in the transition from the normal to the superconducting state. However, substantial experimental evidence obtained in recent years indicates that in at least some superconductors the opposite occurs. Motivated in part by these experiments many novel mechanisms of superconductivity have recently been proposed where the transition to superconductivity is associated with a lowering of the kinetic energy of the carriers. However none of these proposed unconventional mechanisms explores the fundamental reason for kinetic energy lowering nor its wider implications. Here I propose that kinetic energy lowering is at the root of the Meissner effect, the most fundamental property of superconductors. The physics can be understood at the level of a single electron atom: kinetic energy lowering and enhanced diamagnetic susceptibility are intimately connected. We propose that this connection extends to superconductors because they are, in a very real sense, "giant atoms". According to the theory of hole superconductivity, superconductors expel negative charge from their interior driven by kinetic energy lowering and in the process expel any magnetic field lines present in their interior. Associated with this we predict the existence of a macroscopic electric field in the interior of superconductors and the existence of macroscopic quantum zero-point motion in the form of a spin current in the ground state of superconductors (spin Meissner effect). In turn, the understanding of the role of kinetic energy lowering in superconductivity suggests a new way to understand the fundamental origin of kinetic energy lowering in quantum mechanics quite generally. This provides a new understanding of "quantum pressure", the stability of matter and the origin of fermion anticommutation relations, it leads to the prediction that spin currents exist in the ground state of aromatic ring molecules, and that the electron wavefunction is double-valued, requiring a reformulation of conventional quantum mechanics.
A novel temperature-independent superconducting device that employs a doped semiconductor is presented in this study. The underlying theory of this superconductivity is confirmed by experimental results. Specifically, superconductivity generates a negative electric field with characteristics of both electrostatic and current-induced fields. This type of electric field creates a new paired interaction between two electrons and implies the existence of a new force. The negative electric field also exhibits the Meissner effect. Moreover, magnetic flux quanta are produced in the semiconductor. The Aharonov–Bohm effect is exhibited to create a superconducting current along the electric circuit of the superconducting system. Therefore, a load introduced to the circuit will also become superconductive. This finding has strong potential for practical applications. To solve the problem of critical current, a static magnetic field is applied. This field combines with the new electric field to yield cyclotron motion, which increases superconducting current.
Since the discovery of the Meissner effect, the superconductor to normal (S–N) phase transition in the presence of a magnetic field is understood to be a first-order phase transformation that is reversible under ideal conditions and obeys the laws of thermodynamics. The reverse (N–S) transition is the Meissner effect. This implies in particular that the kinetic energy of the supercurrent is not dissipated as Joule heat in the process where the superconductor becomes normal and the supercurrent stops. In this paper, we analyze the entropy generation and the momentum transfer between the supercurrent and the body in the S–N transition and the N–S transition as described by the conventional theory of superconductivity. We find that it is not possible to explain the transition in a way that is consistent with the laws of thermodynamics unless the momentum transfer between the supercurrent and the body occurs with zero entropy generation, for which the conventional theory of superconductivity provides no mechanism. Instead, we point out that the alternative theory of hole superconductivity does not encounter such difficulties.
Superconductivity and magnetic properties were studied for La and Pt substituted (Ca, Ba)0.90.9La0.10.1Fe1.91.9Pt0.10.1As2 samples using structural, resistivity and magnetic measurement techniques. All bulk samples were synthesized by solid-state reaction method and annealed under a specific annealing technique with a time-dependent annealing process in vacuumed quartz tubes. ThCr2Si2-type crystal structure was concluded for both samples varying with in- and out-of-plane lattice parameters. The superconducting critical temperatures were determined by resistivity and under H = 20 Oe magnetization measurements, which were performed between the temperature ranges of 0–200 K. The upper and lower critical fields were determined and possible Meissner effects were roughly figured out to understand the level of shielding from M–H measurements. The maximum critical temperature was obtained from Ca0.90.9La0.10.1Fe1.91.9Pt0.10.1As2.
A type I superconductor expels a magnetic field from its interior to a surface layer of thickness λLλL, the London penetration depth. λLλL is a function of temperature, becoming smaller as the temperature decreases. Here we analyze the process of cooling (or heating) a type I superconductor in a magnetic field, with the system remaining always in the superconducting state. The conventional theory predicts that Joule heat is generated in this process, the amount of which depends on the rate at which the temperature changes. Assuming the final state of the superconductor is independent of history, as the conventional theory assumes, we show that this process violates the first and second laws of thermodynamics. We conclude that the conventional theory of superconductivity is internally inconsistent. Instead, we suggest that the alternative theory of hole superconductivity may be able to resolve this problem.
Considerations on the current status of the theory of superconductivity, the bibliometric H-index, and H. C. Andersen’s tale about the emperor’s new clothes. First appeared in the APS Forum on Physics and Society quarterly newsletter, January 2020.
Within the kinetic energy driven superconducting mechanism, the doping and temperature dependence of the superfluid density in cuprate superconductors is studied throughout the superconducting dome. It is shown that the superfluid density shows a crossover from the linear temperature dependence at low temperatures to a nonlinear one in the extremely low temperatures. In analogy to the dome-like shape of the doping dependent superconducting transition temperature, the maximal zero-temperature superfluid density occurs around the critical doping δ ≈ 0.195, and then decreases in both lower doped and higher doped regimes.
The theory of hole superconductivity proposes that superconductivity is driven by lowering of quantum kinetic energy and is associated with expansion of electronic orbits and expulsion of negative charge from the interior to the surface of superconductors and beyond. This physics provides a dynamical explanation of the Meissner effect. Here we propose that similar physics takes place in superfluid helium 4. Experimental manifestations of this physics in 4He are the negative thermal expansion of 4He below the λ point and the "Onnes effect", the fact that superfluid helium will creep up the walls of the container and escape to the exterior. The Onnes effect and the Meissner effect are proposed to originate in macroscopic zero point rotational motion of the superfluids. It is proposed that this physics indicates a fundamental inadequacy of conventional quantum mechanics.
In this paper, we propose a simple and universal physical picture of superconductivity, which is called the “close-shell inversion”. With this picture, the basic properties of a superconductor, such as zero-resistance and Meissner effect, are well accounted. The emphasis is placed on the field screening mechanism of a superconductor subject to an external magnetic field.
Alfven’s theorem states that in a perfectly conducting fluid magnetic field lines move with the fluid without dissipation. When a metal becomes superconducting in the presence of a magnetic field, magnetic field lines move from the interior to the surface (Meissner effect) in a reversible way. This indicates that a perfectly conducting fluid is flowing outward. I point this out and show that this fluid carries neither charge nor mass, but carries effective mass. This implies that the effective mass of carriers is lowered when a system goes from the normal to the superconducting state, which agrees with the prediction of the unconventional theory of hole superconductivity and with optical experiments in some superconducting materials. The 60-year old conventional understanding of the Meissner effect ignores Alfven’s theorem and for that reason I argue that it does not provide a valid understanding of real superconductors.
Dissipative-free electric current flow is one of the most fascinating and practically important properties of superconductors. Theoretical consideration of the charge carriers flow in infinitely long rectangular slab of superconductor in the absence of external magnetic field (so called, self-field) is based on an assumption that the charge carriers have rectilinear trajectories in the direction of the current flow whereas the current density and magnetic flux density are decaying towards superconducting slab with London penetration depth as characteristic length. Here, we calculate charge particle trajectories (as single electron/hole, as Cooper pair) at self-field conditions and find that charge carriers do not follow intuitive rectilinear trajectories along the slab surface, but instead ones have meander shape trajectories cross the whole thickness of the slab. Moreover, if the particle velocity is below some value, the charge moves in opposite direction to nominal current flow. This disturbance of the canonical magnetic flux density distribution and backward movement of Cooper pairs can be entire mechanism for power dissipation in superconductors.
Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.
A rotating black hole threaded by an infinitely long cosmic string is studied in the framework of the Abelian Higgs model. We show that contrary to a common belief in the presence of rotation the backreaction of the string does not induce a simple conical deficit. This leads to new distinct features of the Kerr–string system such as modified ISCO or shifted ergosphere, though these effects are most likely outside the range of observational precision. For an extremal rotating black hole, the system exhibits a first-order phase transition for the gravitational Meissner effect: small black holes exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon, whereas the horizon of large black holes is pierced by the vortex.
For extremal black holes, one can construct simpler, limiting spacetimes that describe the geometry near degenerate horizons. Since these spacetimes are known to have enhanced symmetry, the limiting objects coincide for different solutions. We show that this occurs for strongly magnetised Kerr-Newman solution, and how this is related to the Meissner effect of expulsion of magnetic fields from extremal black holes.
It is known that the Meissner effect of black holes is seen in the vacuum solutions of blackhole magnetosphere: no non-monopole component of magnetic flux penetrates the event horizon if the black hole is extreme. In this article, in order to see the effects of charge currents, we study the force-free magnetic field on the extreme Reissner-Nordström background. In this case, we should solve one elliptic differential equation called the Grad-Shafranov equation which has singular points called light surfaces. In order to see the Meissner effect, we consider the region near the event horizon and try to solve the equation by Taylor expansion about the event horizon. Moreover, we assume that the small rotational velocity of the magnetic field, and then, we construct a perturbative method to solve the Grad-Shafranov equation considering the efftect of the inner light surface and study the behavior of the magnetic field near the event horizon.
Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.