Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We conducted a modeling study of the threading dislocation behavior in chirped and unchirped InGaAs/GaAs (001) strained-layer superlattices (SLSs) using a Dodson & Tsao / Kujofsa & Ayers (DTKA) type plastic flow model. Four types of SLSs were investigated: type I was chirped using compositional modulation, type II was chirped using layer thickness modulation, type III was unchirped with alternating layers of InGaAs and GaAs, and type IV was unchirped with alternating layers of InGaAs having two different compositions. Generally the surface and average values of the dislocation density decreased with increasing total thickness. The dependence on top indium composition was more complex, due to dislocation compensation and multiplication effects, but for type II and IV superlattices, the average and surface threading dislocation densities increased in nearly monotonic fashion with top indium composition. Based on these results, the compositionally-modulated chirped (type I) and InGaAs/GaAs unchirped (type III) superlattices appear to be best suited as buffer layers for metamorphic devices, while the chirped superlattices with layer thickness modulation (type II) and InGaAs/InGaAs unchirped (type IV) superlattices appear to be poorly suited for use as buffer layers for devices containing high indium content.
Metamorphic semiconductor devices often utilize compositionally-graded buffer layers for the accommodation of the lattice mismatch with controlled threading dislocation density and residual strain. Linear or step-graded buffers have been used extensively in these applications, but there are indications that sublinear, superlinear, S-graded, or overshoot graded structures could offer advantages in the control of defect densities. In this work we compare linear, step-graded, and nonlinear grading approaches in terms of the resulting strain and dislocations density profiles using a state-of-the-art model for strain relaxation and dislocation dynamics. We find that sublinear grading results in lower surface dislocation densities than either linear or superlinear grading approaches.
We conducted a modeling study of the threading dislocation behavior in chirped and unchirped InGaAs/GaAs (001) strained-layer superlattices (SLSs) using a Dodson & Tsao / Kujofsa & Ayers (DTKA) type plastic flow model. Four types of SLSs were investigated: type I was chirped using compositional modulation, type II was chirped using layer thickness modulation, type III was unchirped with alternating layers of InGaAs and GaAs, and type IV was unchirped with alternating layers of InGaAs having two different compositions. Generally the surface and average values of the dislocation density decreased with increasing total thickness. The dependence on top indium composition was more complex, due to dislocation compensation and multiplication effects, but for type II and IV superlattices, the average and surface threading dislocation densities increased in nearly monotonic fashion with top indium composition. Based on these results, the compositionally-modulated chirped (type I) and InGaAs/GaAs unchirped (type III) superlattices appear to be best suited as buffer layers for metamorphic devices, while the chirped superlattices with layer thickness modulation (type II) and InGaAs/InGaAs unchirped (type IV) superlattices appear to be poorly suited for use as buffer layers for devices containing high indium content.
Metamorphic semiconductor devices often utilize compositionally-graded buffer layers for the accommodation of the lattice mismatch with controlled threading dislocation density and residual strain. Linear or step-graded buffers have been used extensively in these applications, but there are indications that sublinear, superlinear, S-graded, or overshoot graded structures could offer advantages in the control of defect densities. In this work we compare linear, step-graded, and nonlinear grading approaches in terms of the resulting strain and dislocations density profiles using a state-of-the-art model for strain relaxation and dislocation dynamics. We find that sublinear grading results in lower surface dislocation densities than either linear or superlinear grading approaches.