Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Amorphous FeCo nanowires (NWs) with the average diameter of 120nm were successfully prepared with a magnetic-field-assisted (MFA) hydrothermal method. Rapid reaction time was adopted to obtain amorphous FeCo NWs, being checked by XRD and TEM. Tuning the stoichiometric ratio of Fe/Co content meets the optimal impedance matching under different absorption frequency, making both improved intensities and frequency ranges of microwave absorption. For example, under 3mm coating thickness, the reflection loss (RL) peaks of Fe3Co7, Fe5Co5 and Fe7Co3 NWs are −25.88dB at 4GHz, −19.06dB at 4.24GHz and −21.98dB at 5.44GHz. The related efficient absorption bandwidths (fE<−10 dB) of Fe3Co7 NWs, Fe5Co5 NWs and Fe7Co3 NWs are 5.40GHz, 3.52GHz and 4.91GHz, respectively. It is ascribed to integrating enhanced dielectric/conductive losses, negligible damages from eddy current effect and good impedance matching for high-performance FeCo NWs absorbers. This work paves a new path on synthesizing bimetallic wire-like nanostructures for microwave absorption demands.
The ultra-thin Fe attached multi-walled carbon nanotube hybrid buckypaper (Fe/MWCNT hybrid buckypaper) was fabricated by vacuum filtration method with monodispersion solutions of MWCNTs and Fe nanoparticles. The morphology, element composition and magnetic properties of buckypapers were characterized by field-emission scanning electron microscope, X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometer. The complex permittivity and permeability, the reflection loss (RL) properties of buckypapers attached composite were investigated in the frequency range of 12.4–18 GHz. The Fe/MWCNTs hybrid buckypaper attached composite posses much broader absorbing bandwidth and larger reflectivity than those of pure MWCNTs buckypaper attached composite with the same absorbing thickness (dm = 0.1 mm). The best reflectivity below -5 dB is at 14.0–18 GHz, and the minimum value is -14.4 dB at 16.8 GHz. The experimental result indicates that Fe/MWCNTs hybrid buckypaper has potential application in thin thickness and light-weight microwave absorbers.