Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Cantilever plate structures are widely used in civil and aerospace engineering. Here, a semi-analytical method is proposed to calculate the dynamic responses of cantilever plates subjected to moving forces. The Rayleigh–Ritz method is used to obtain the semi-analytical modal frequencies and shapes of a thin, isotropic, and rectangular cantilever plate using the assumed mode shapes that fulfill the boundary conditions of the plate. The modal superposition method is used to decouple the motion equations of the cantilever plate to obtain a series of modal equations. Then, the generalized forces are transformed into a Fourier series in terms of discrete harmonic forces. The dynamic responses of the cantilever plate are obtained by superimposing the analytical responses of a number of single-degree-of-freedom modal systems under discrete harmonic forces. The proposed semi-analytical method is verified through comparison with the numerical method. Then, the vibration of the cantilever plate under the action of moving forces is investigated based on the semi-analytical results. It is found that the contribution of the high-order modes to the dynamic responses of the plate cannot be ignored. In addition, the wavelengths of the mode shapes not only affect the magnitude of the modal forces but also the dominant frequency of the modal forces. Resonant responses of the plate are produced by the moving forces when the load interval equals the wavelength of the mode shape of a high-order mode and the exciting frequency of the moving forces equals the natural frequency of this mode.
This paper studies the dynamic response of a cantilevered beam subjected to a moving moment and torque, and combination of them with a moving force. The moving loads are considered to traverse along the length of the beam either from fixed-to-free end or free-to-fixed end. The beam is considered to have constant material and geometric properties. The beam is modeled using the Rayleigh beam theory considering the rotary inertia effects. The Dirac-delta function used to model the moving loads in the governing partial differential equations (PDEs) has complicated the solution of the problem. The Eigenfunction expansions coupled with the Laplace transformation method is used to find the semi-analytical solution for the resulting governing PDEs. The effects of moving loads on the dynamic response are studied. The dynamic effects are quantified based on the number of oscillations per unit travel time of the moving load and the Dynamic Amplification Factor (DAF) of the beam’s tip response. Numerical results are also analyzed for the two-speed regimes, namely high-speed and low-speed regimes, defined with respect to the critical speed of the moving loads. The accuracy of the analytical solutions are verified by the finite element analysis. The numerical results show that the loads moving with low speeds have significant impact on the dynamic response compared to high speeds. Also, the moving moment has significant impact on the amplitude of dynamic response compared with the moving force case.