Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    THERMAL STRESS BEHAVIOR IN NANO-SIZE THIN ALUMINUM FILMS

    In-situ observation of thermal stresses in thin films deposited on a silicon substrate was made by synchrotron radiation. Specimens prepared in this experiment were nano-size thin aluminum films with SiO2 passivation. The thickness of the films was 10 nm, 20 nm and 50 nm. Synchrotron radiation revealed the diffraction intensities for these thin films and make possible to measure stresses in nano-size thin films. Residual stresses in the as-deposited state were tensile. Compressive stresses were developed in a heating cycle up to 300°C and tensile stresses were developed in a cooling cycle. The thermal stresses in the 50 nm film showed linear behavior in the first heating stage from room temperature to 250°C followed by no change in the stress at 300°C, however, linearly behaved in the second cycle. On the other hand, the thermal stresses in 20 nm and 10 nm films almost linearly behaved without any hysteresis in increasing and decreasing temperature cycles. The mechanism of thermal stress behavior in thin films can be explained by strengthening of the nano-size thin films due to inhibition of dislocation source and dislocation motion.

  • chapterNo Access

    ARRANGEMENT OF INORGANIC MATERIALS ON SELF-ASSEMBLED MONOLAYERS USING CHEMICAL REACTIONS

    Novel processes for fabricating micro/nano sized oxide devices employing self-assembled monolayers (SAM) were developed. SAM of PTCS (phenyltrichlorosilane) was modified to have a phenyl / hydroxyl-group pattern by UV irradiation using a photomask and was used as a template to arrange inorganic fine particles. Surface modification of micro/nano sized inorganic particles and chemical reactions between those particles and SAM were studied. Two-dimensional arrangement of functional particles on a SAM in a controlled manner through the formation of strong chemical bonds, such as amide or ester bonds, can be applied to the future microelectronics and photonics.