System Upgrade on Tue, May 28th, 2024 at 2am (EDT)
Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours. For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Based on the independent measurements on neutrino mass splitting , and recent measurements by the T2K Collaboration, we carry out a simple fitting analysis on and in normal hierarchy and inverted hierarchy respectively, suggesting and in normal hierarchy, or and in inverted hierarchy. The simple analysis indicate that both normal and inverted hierarchies are consistent with current experimental measurements on mass splitting. The p-value for normal hierarchy and that for inverted hierarchy are 62% and 55%, respectively. This reveals a slight favor for the normal hierarchy. It is suggested that further measurements on the mass splitting with higher accuracy are necessary to determine the neutrino mass hierarchy.
The detection of galactic supernova (SN) neutrinos represents one of the future frontiers of low energy neutrino physics and astrophysics. The neutron coherence of neutral currents (NCs) allows quite large cross-sections in the case of neutron rich targets, which can be exploited in detecting earth and sky neutrinos by measuring nuclear recoils. They are relatively cheap and easy to maintain. These (NC) cross-sections are not dependent on flavor conversions and, thus, their measurement will provide useful information about the neutrino source. In particular, they will yield information about the primary neutrino fluxes and perhaps about the spectrum after flavor conversions in neutrino sphere. They might also provide some clues about the neutrino mass hierarchy. The advantages of large gaseous low threshold and high resolution time projection counters (TPC) detectors are discussed.
The detection of galactic supernova (SN) neutrinos represents one of the future frontiers of low energy neutrino physics and astrophysics. The neutron coherence of neutral currents (NCs) allows quite large cross-sections in the case of neutron rich targets, which can be exploited in detecting earth and sky neutrinos by measuring nuclear recoils. They are relatively cheap and easy to maintain. These (NC) cross-sections are not dependent on flavor conversions and, thus, their measurement will provide useful information about the neutrino source. In particular, they will yield information about the primary neutrino fluxes and perhaps about the spectrum after flavor conversions in neutrino sphere. They might also provide some clues about the neutrino mass hierarchy. The advantages of large gaseous low threshold and high resolution time projection counters (TPC) detectors are discussed.