Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This publication considers the use of a variety of additive manufacturing techniques in the development of wireless modules and sensors. The opportunities and advantages of these manufacturing techniques are explored from an application point of view. We discuss first the origami (4D-printed) structures which take advantage of the ability to alter the shape of the inkjet-printed conductive traces on the paper substrate to produce a reconfigurable behavior. Next, focus is shifted towards the use of additive manufacturing technology to develop skin-like flexible electrical system for wireless sensing applications. We then discuss the development of a fully flexible energy autonomous body area network for autonomous sensing applications, the system is fabricated using 3D and inkjet printing techniques. Finally, an integration of inkjet and 3D printing for the realization of efficient mm-wave 3D interconnects up to 60GHz is discussed.
This publication provides an overview of additive manufacturing techniques including Inkjet, 3D and 4D printing methods. The strengths, opportunities and advantages of this array of manufacturing techniques are evaluated at different scales. We discuss first the applicability of additive manufacturing techniques at the device scale including the development of origami inspired tunable RF structures as well as the development of skin-like conformal, flexible systems for wireless/IoT, Smartag and smart city applications. We then discuss application at the package scale with on package printed antennas and functional packaging applications. Following this, there is a discussion of additive manufacturing techniques in applications at the die scale such as 3D printed interconnects. The paper is concluded with an outlook on future advancements at the component scale with the potential for fully printed passive components.
With the development of inkjet-/3D-/4D-printing additive manufacturing technologies, flexible 3D substrate with complex structures can be patterned with dielectric, conductive and semi-conductive materials to realize novel RF designs. This paper provides a review of state-of-the-art additively manufactured passive RF devices including antennas and frequency selective surfaces (FSS), couplers, where origami-inspired structure enables unprecedented capabilities of on-demand continuous frequency tunability and deployability. This paper also discusses additively manufactured active RF modules and systems such as inkjet printed RF energy harvester system with high sensitivity and efficiency for Internet of Things (IoT), smart cities and wireless sensor networks (WSN) applications, inkjet-printed RF front ends, and inkjet-printed mm-wave backscatter modules.
This review encompasses additive manufacturing techniques for crafting 5G electronics, showcasing how these methods innovate device creation with novel examples. A wearable phased array device on commonplace 3D printed material is described, with integrated microfluidic cooling channels used for thermal regulation of integrated circuit bulk components. Mechanical and electrical tunability are exemplified in an origami-inspired phased array structure. A 3D printed IoT cube structure shows the flexibility in the number of geometries additively manufactured 5G devices can adhere to. Finally, integrating 3D optical lenses with 5G electronics is shown.
Fix an n ≥ 3. Consider the following two operations: given a line with a specified point on the line we can construct a new line through the point which forms an angle with the new line which is a multiple of π/n (folding); and given two lines we can construct the point where they cross (intersection). Starting with the line y = 0 and the points (0,0) and (1,0) we determine which points in the plane can be constructed using only these two operations for n = 3,4,5,6,8,10,12,24 and also consider the problem of the minimum number of steps it takes to construct such a point.
Region Select is a game originally defined on a knot projection. In this paper, Region Select on an origami crease pattern is introduced and investigated. As an application, a new unlinking number associated with region crossing change is defined and discussed.
Foldable origami-based structures are a type of deployable structures that are increasingly applied in the space and building industries. When folded, the small size of such structures facilitates transportation and storage. Meanwhile, the properties of their larger deployed state may be of interest to different applications. A stable working condition is established by locking the structure in its deployed state, as in the process of deployment, the driving forces may generate a dynamic effect, thus leading to instability of the system. Hence, the study of dynamic characteristics of such structures, including trajectory, duration, velocity, and acceleration is of paramount importance. In this paper, based on the general dynamic equation and Lagrange’s equations of the first kind, the finite element method is adopted to investigate the dynamic deployment of foldable plate structures in terms of the generalized nodal coordinates. The proposed geometric description of a quadrilateral plate element is based on a folding plate composed of refined triangular elements, which are used to approximate the real shells in the structure. Subsequently, a MATLAB framework is developed on the basis of the element using the Newmark integration and the Newton–Raphson iteration method to simulate the deployment process of the structure. Comparisons between MATLAB results and ADAMS results verify the reliability of the framework in analyzing the dynamic deployment of the foldable origami-based structures with sufficient accuracy.
The mechanical properties and deformation of Origami structures are studied in this paper. Usually, it is a coupling problem of crease rotation and shell deformation. Here, the creases are simplified as torsional springs, whose rotational stiffness k is obtained by the experiment of compressing a creased shell. While the shells that may have large deformation are simplified as rigid plates connected by virtual creases, whose rotational stiffness is roughly expressed as bending stiffness divides width of the shell. Hence, a coupling factor C is defined to evaluate the coupling effect of creases and shells. Implementing the obtained rotational stiffnesses of real and virtual creases into the expression of strain energy, an improved Virtual Crease Method (VCM) is proposed. By analyzing the bi-stability of creased shell and Miura-Ori structure, the accuracy and convergence of this improved VCM is proved.
Origami-inspired structures have found many innovative applications in engineering fields. The expressive volume changes intrinsically related to their geometry is very useful for different purposes. Nevertheless, the mathematical description of origami structures is complex, which makes the design a challenging topic. This work deals with the use of reduce-order models for the origami description. A cylindrical origami structure with waterbomb pattern, called origami stent, is of concern. A reduced-order model (ROM) is developed based on kinematics and symmetry hypotheses. Afterward, a finite element analysis (FEA) is developed based on a nonlinear bar-and-hinge model. Numerical simulations are carried out evaluating the ROM validity range. Rigid and non-rigid situations are investigated showing that ROM is able to be employed for origami description.
One of the critical challenges in engineering is the wireless transfer of energy to power miniaturized electronic devices that have sizes smaller than the wavelength of electromagnetic radiation. Here, we describe a strategy to self-fold three-dimensional (3D) low gigahertz responsive antennas with small form factors using capillary forces. The antennas are sub-millimeter (500 × 500 × 500 (m3) cubic devices with small form factors and hollow free space in their interior which could be used to embed other devices. We characterize and demonstrate the efficacy of these antennas in dispersive media. Remarkeably, we observe significantly higher power transfer with over an order of magnitude higher transfer efficiency as compared to similarly shaped planar antennas. Moreover, we show that the antennas can transfer on the order of 30 mW to power an LED, highlighting proof of concept for practical applications. Our findings suggest that self-folding polyhedral microantennas could provide a viable solution for powering tiny microdevices.
This publication provides an overview of additive manufacturing techniques including Inkjet, 3D and 4D printing methods. The strengths, opportunities and advantages of this array of manufacturing techniques are evaluated at different scales. We discuss first the applicability of additive manufacturing techniques at the device scale including the development of origami inspired tunable RF structures as well as the development of skin-like conformal, flexible systems for wireless/IoT, Smartag and smart city applications. We then discuss application at the package scale with on package printed antennas and functional packaging applications. Following this, there is a discussion of additive manufacturing techniques in applications at the die scale such as 3D printed interconnects. The paper is concluded with an outlook on future advancements at the component scale with the potential for fully printed passive components.
With the development of inkjet-/3D-/4D-printing additive manufacturing technologies, flexible 3D substrate with complex structures can be patterned with dielectric, conductive and semi-conductive materials to realize novel RF designs. This paper provides a review of state-of-the-art additively manufactured passive RF devices including antennas and frequency selective surfaces (FSS), couplers, where origami-inspired structure enables unprecedented capabilities of on-demand continuous frequency tunability and deployability. This paper also discusses additively manufactured active RF modules and systems such as inkjet printed RF energy harvester system with high sensitivity and efficiency for Internet of Things (IoT), smart cities and wireless sensor networks (WSN) applications, inkjet-printed RF front ends, and inkjet-printed mm-wave backscatter modules.
This review encompasses additive manufacturing techniques for crafting 5G electronics, showcasing how these methods innovate device creation with novel examples. A wearable phased array device on commonplace 3D printed material is described, with integrated microfluidic cooling channels used for thermal regulation of integrated circuit bulk components. Mechanical and electrical tunability are exemplified in an origamiinspired phased array structure. A 3D printed IoT cube structure shows the flexibility in the number of geometries additively manufactured 5G devices can adhere to. Finally, integrating 3D optical lenses with 5G electronics is shown.
Nature offers an astonishing array of complex structures and functional devices. The most sophisticated examples of functional systems with multiple interconnected nano-scale components can be found in biology. Biology uses a limited number of building blocks to create complexity and to extend the size and the functional range of basic nano-scale structures to new domains. Three main groups of molecular tools used by biology include oligonucleotides (linear chains of nucleotides), proteins (folded chains of amino acids), and polysaccharides (chains of sugar molecules). Nature uses these tools to store information, to create structures, and to build nano-scale machines.
Recent advances in understanding the structure and function of these building blocks has enabled a number of novel uses for them outside the biological domain. Of particular interest to us is the use of these building blocks to self-assemble nano-scale electronic, photonics, or nanomechanical systems. In this chapter we will look at two groups of building blocks (oligonucleotides and proteins) and review how they have been used to self-assemble engineered structures and build functional devices in the nano-scale.
We will begin by a review of the basic structure and properties (both physical and chemical) of oligonucleotides and proteins. This section is meant to be used as a self-contained reference for the readers from the engineering community that may be less familiar with the symbols and jargon of biochemistry. The most salient properties of the biomolecules are emphasized and listed here to facilitate future research in the area. We continue by a review of recent advances in designing artificial nano-scale DNA structures that can be constructed entirely via engineered self-assembly. Rapid advances in the design and construction of self-assembled DNA structures has resulted in an impressive level of understanding and control over this type of nano-scale manufacturing. Polypeptides and proteins are decidedly less understood and their use in engineered self-assembly has been relatively limited. Nevertheless, as we discuss in the concluding sections of the chapter, both genetically engineered polypeptides and proteins can be used to guide self-assembly processes in nano-scale and help in interfacing nano-scale objects with micron-scale components and templates.
This publication considers the use of a variety of additive manufacturing techniques in the development of wireless modules and sensors. The opportunities and advantages of these manufacturing techniques are explored from an application point of view. We discuss first the origami (4D-printed) structures which take advantage of the ability to alter the shape of the inkjet-printed conductive traces on the paper substrate to produce a reconfigurable behavior. Next, focus is shifted towards the use of additive manufacturing technology to develop skin-like flexible electrical system for wireless sensing applications. We then discuss the development of a fully flexible energy autonomous body area network for autonomous sensing applications, the system is fabricated using 3D and inkjet printing techniques. Finally, an integration of inkjet and 3D printing for the realization of efficient mm-wave 3D interconnects up to 60GHz is discussed.