Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Let R be a prime ring and L a non-central Lie ideal of R. We aim in this paper to classify generalized derivations F of R satisfying the following algebraic identity:
Given two unital associative rings R ⊆ S, the ring S is said to be an ideal (or Dorroh) extension of R if S = R ⊕ I, for some ideal I ⊆ S. In this note, we investigate the ideal structure of an arbitrary ideal extension of an arbitrary ring R. In particular, we describe the Jacobson and upper nil radicals of such a ring, in terms of the Jacobson and upper nil radicals of R, and we determine when such a ring is prime and when it is semiprime. We also classify all the prime and maximal ideals of an ideal extension S of R, under certain assumptions on the ideal I. These are generalizations of earlier results in the literature.
We study an associative algebra A over an arbitrary field that is a sum of two subalgebras A1 and A2 (i.e. A = A1 + A2). Additionally we assume that Ai has an ideal of finite codimension in Ai which satisfies a polynomial identity fi = 0 for i = 1, 2. Suppose that all rings R = R1 + R2, which are sums of subrings R1 and R2, are PI rings when Ri satisfies the polynomial identity fi = 0 for i = 1, 2. We prove that A is a PI algebra.
Let R be a prime ring of characteristic different from 2 with extended centroid C. Let F be a generalized derivation of R, L a non-central Lie ideal of R, f(x1, …, xn) a polynomial over C and f(R)={f(r1, …, rn): ri ∈ R}. We study the following cases: (1) [F(u), F(v)]k=0 for all u, v ∈ L, where k ≥ 1 is a fixed integer; (2) [F(u), F(v)] = 0 for all u, v ∈ f(R); (3) F(u) ◦ F(v)=0 for all u, v ∈ f(R); (4) F(u) ◦ F(v)=u ◦ v for all u, v ∈ f(R). We obtain a description of the structure of R and information on the form of F.
Let R be a ring and α,β be endomorphisms of R. An additive mapping F: R → R is called a generalized (α,β)-derivation on R if there exists an (α,β)-derivation d: R → R such that F(xy)=F(x) α(y) + β(x)d(y) holds for all x, y ∈ R. In the present paper, we discuss the commutativity of a prime ring R admitting a generalized (α,β)-derivation F satisfying any one of the properties: (i) [F(x),x]α,β=0, (ii) F([x,y])=0, (iii) F(x ◦ y)=0, (iv) F([x,y])=[x,y]α,β, (v) F(x ◦ y)=(x ◦ y)α,β, (vi) F(xy)- α(xy) ∈ Z(R), (vii) F(x)F(y)- α(xy) ∈ Z(R) for all x, y in an appropriate subset of R.
Let K be a commutative ring with unity, R a non-commutative prime K-algebra with center Z(R), U the Utumi quotient ring of R, C=Z(U) the extended centroid of R, I a non-zero two-sided ideal of R, H and G non-zero generalized derivations of R. Suppose that f(x1,…,xn) is a non-central multilinear polynomial over K such that H(f(X))f(X)-f(X)G(f(X))=0 for all X=(x1,…,xn)∈ In. Then one of the following holds: (1) There exists a ∈ U such that H(x)=xa and G(x)=ax for all x ∈ R. (2) f(x1,…,xn)2 is central valued on R and there exist a, b ∈ U such that H(x)=ax+xb and G(x)=bx+xa for all x ∈ R. (3) char(R)=2 and R satisfies s4, the standard identity of degree 4.
Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, and H, G nonzero generalized derivations of R. Suppose that there exists an integer n ≥ 1 such that H(un)un + unG(un) ∈ C for all u ∈ L, then either there exists a ∈ U such that H(x) = xa and G(x) = -ax, or R satisfies the standard identity s4 and one of the following holds: (i) char(R) = 2; (ii) n is even and there exist a′ ∈ U, α ∈ C and derivations d, δ of R such that H(x) = a′ x + d(x) and G(x) = (α-a′)x + δ(x); (iii) n is even and there exist a′ ∈ U and a derivation δ of R such that H(x)=xa′ and G(x) = -a′ x + δ(x); (iv) n is odd and there exist a′, b′ ∈ U and α, β ∈ C such that H(x) = a′ x + x(β-b′) and G(x) = b′ x+x(α-a′); (v) n is odd and there exist α, β ∈ C and a derivation d of R such that H(x) = α x+d(x) and G(x) = β x + d(x); (vi) n is odd and there exist a′ ∈ U and α ∈ C such that H(x) = xa′ and G(x) = (α - a′)x. As an application of this purely algebraic result, we obtain some range inclusion results of continuous or spectrally bounded generalized derivations H and G on Banach algebras R satisfying the condition H(xn)xn + xnG(xn) ∈ rad(R) for all x ∈ R, where rad(R) is the Jacobson radical of R.
Let R be a non-commutative prime ring of characteristic different from 2 with Utumi quotient ring U and extended centroid C, f(x1,…,xn) a multilinear polynomial over C which is not an identity for R, F and G two non-zero generalized derivations of R. If F(u)G(u)=0 for all u ∈ f(R)= {f(r1,…,rn): ri∈ R}, then one of the following holds: (i) There exist a, c ∈ U such that ac=0 and F(x)=xa, G(x)=cx for all x ∈ R; (ii) f(x1,…,xn)2 is central valued on R and there exist a, c ∈ U such that ac=0 and F(x)=ax, G(x)=xc for all x ∈ R; (iii) f(x1,…,xn) is central valued on R and there exist a,b,c,q ∈ U such that (a+b)(c+q)=0 and F(x)=ax+xb, G(x)=cx+xq for all x ∈ R.
Let σ, τ be automorphisms of a ring R. In the present paper many concepts related to biadditive mappings of rings, viz. σ-left centralizer traces, symmetric generalized (σ, τ)-biderivations, σ-left bimultipliers and symmetric generalized Jordan (σ, τ)-biderivations are studied. Many results related to these concepts are given. It is established that every symmetric generalized (σ, τ)-biderivation of a prime ring of characteristic different from 2, can be reduced to a σ-left bimultiplier under certain algebraic conditions. Further, it is shown that every symmetric generalized Jordan (σ, τ)-biderivation of a prime ring of characteristic different from 2 is a symmetric generalized (σ, τ)-biderivation.
Let R be a prime ring of characteristic different from 2, Qr be the right Martindale quotient ring of R, C=Z(Qr) the extended centroid of R, L be a noncentral Lie ideal of R, H and G be two nonzero b-generalized derivations of R. Suppose there exist fixed integers m,n≥1 such that H(um)un−unG(um)=0, for all u∈L, then either R satisfies the standard identity s4(x1,…,x4) or there is a′∈Qr such that H(x)=xa′, G(x)=a′x, for any x∈R, and one of the following holds:
Then, in the second part of the paper we prove a similar result in the case H and G are generalized skew derivations of R such that H(xm)xn−xnG(xm)=0, for all x∈R.
Let R be an n!-torsion free semiprime ring with center Z(R) and D,G:Rn→R be two n-additive mappings with traces d,g:R→R, respectively. Sǒgǔtchǔ and Gǒlbasi [E. K. Sǒgǔtchǔ and Ǒ. Gǒlbasi, Commutativity theorems on Lie ideals with symmetric bi-derivations in semiprime rings, Asian Eur. J. Math. 16(7) (2023) 2350129] studied the following identities for symmetric bi-derivations:
for all x,y∈U, where U is a square closed Lie ideal of R and then obtained that R contains a nonzero central ideal. In this paper, we prove that the conclusion of above results holds for trace of any n-additive mapping (not necessarily to be symmetric bi-derivation).
Let R be a prime rings and I ≠ 0 an ideal of R. An additive mapping D : R → R is called a left derivation on R if D(xy) = D(x)y + xD(y), holds for all x, y ∈ R. In the present paper, we have discussed the commutativity of a prime rings admitting a left derivation D satisfying several conditions.