Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
The status of lattice calculations of the quark spin, the quark orbital angular momentum, the glue angular momentum and glue spin in the nucleon is summarized. The quark spin calculation is recently carried out from the anomalous Ward identity with chiral fermions and is found to be small mainly due to the large negative anomaly term which is believed to be the source of the ‘proton spin crisis’. We also present the first calculation of the glue spin at finite nucleon momenta.
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.