Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Peculiarity of Terahertz Waves Scattering

    Scattering of terahertz (THz) radiation is considered to be a significant problem for many applications, since it has often multiple character and is followed by interference effects. We present the computational results of THz propagation through scattering layers, obtained by using Monte Carlo simulation scheme of radiation transfer. Dense package of particles is considered for enhancing the influence of structure factor. Interference effects are shown to play an essential role for scattering phase function and scattering angular distribution of THz radiance.

  • articleNo Access

    THE ZEROTH LAW OF THERMODYNAMICS OF THE PHOTON–HYDROGEN SYSTEM AND 21 cm COSMOLOGY

    A basic physical problem of 21 cm cosmology is the so-called Wouthuysen–Field coupling, which assumes that the resonant scattering of Lyα photons with neutral hydrogen atoms will lock the color temperature of the photon spectrum around the Lyα frequency to be equal to the kinetic temperature of hydrogen gas. This assumption is actually the zeroth thermodynamic law on the formation of the local statistically thermal equilibrium state of the photon–atom system. However, the time-dependent process of approaching a local statistically thermal equilibrium with the kinetic temperature has never been studied, as it needs to solve an integral–differential equation — the radiative transfer equation of the resonant scattering. Recently, with a state-of-the-art numerical method, the formation and evolution of the Wouthuysen–Field coupling has been systematically studied. This paper reviews the physical results, including the time scales of the onset of Wouthuysen–Field coupling, the profile of frequency distribution of photons in the state of local thermal equilibrium, the effects of the expansion of the universe, the Wouthuysen–Field coupling in an optical thick halo, etc.

  • chapterOpen Access

    Monte Carlo simulations of photospheric emission in Gamma Ray Bursts

    The study of Gamma Ray Bursts (GRBs) has the potential to improve our understanding of high energy astrophysical phenomena. In order to reliably use GRBs to this end, we first need to have a well-developed grasp of the mechanism that produces the radiation within GRB jets and how that relates to their structure. One model for the emission mechanism of GRBs invokes radiation produced deep in the jet which eventually escapes the jet at its photosphere. While this model has been able to explain a number of observed GRB characteristics, it is currently lacking in predictive power and in ability to fully reproduce GRB spectra. In order to address these shortcomings of the model, we have expanded the capabilities of the MCRaT code, a state of the art radiative transfer code that can now simulate optical to gamma ray radiation propagating in a hydrodynamically simulated GRB jet. Using the MCRaT code, we have constructed mock observed light curves, spectra, and polarization from optical to gamma ray energies for the simulated GRBs. Using these mock observables, we have compared our simulations of photospheric emission to observations and found much agreement between the two. Furthermore, the MCRaT calculations combined with the hydrodynamical simulations allow us to connect the mock observables to the structure of the simulated GRB jet in a way that was not previously possible. While there are a number of improvements that can be made to the analyses, the steps taken here begin to pave the way for us to fully understand the connection between the structure of a given GRB jet and the radiation that would be expected from it.

  • chapterNo Access

    Chapter 53: CALCULATIONS OF INFRARED FLUXES FROM GALACTIC SOURCES FOR A POLYSACCHARIDE GRAIN MODEL

    Using transmittance data appropriate for grain material which is predominantly comprised of polysaccharides we have computed infrared fluxes from several types of galactic infrared source. The model used in these computations involves polysaccharide condensation in material flowing out from O-type stars. With the exception of rather minor discrepancies we show that it is possible to match the 2.1–13 μ observations of a wide range of galactic infrared sources.

  • chapterNo Access

    Peculiarity of Terahertz Waves Scattering

    Scattering of terahertz (THz) radiation is considered to be a significant problem for many applications, since it has often multiple character and is followed by interference effects. We present the computational results of THz propagation through scattering layers, obtained by using Monte Carlo simulation scheme of radiation transfer. Dense package of particles is considered for enhancing the influence of structure factor. Interference effects are shown to play an essential role for scattering phase function and scattering angular distribution of THz radiance.