Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Radio-astronomical monitoring of active regions in the microwave range in the service of forecasting solar flares

    One of the key factors of space weather is solar flare activity, the monitoring and prediction of which is an important task of specialized dedicated groups of space experts and solar astronomers. Solar flare forecasts are based on identifying and detecting the so-called precursors, specific processes in solar activity events that occur before flares. Collecting data for space weather analysis and prediction comes down to several types of measurements performed by more than a dozen spacecraft. Ground-based observations and monitoring nowadays are becoming more or less complimentary. One of the reasons for this is the limitation of observation time with ground-based telescopes due to adverse Earth weather conditions. However, solar radio astronomy is immune to almost any weather activity, and the main question here is what new quality it can bring. Observational data accumulated in the 20th century show that solar radio bursts can be associated with flare activity. In addition, the existing network of solar radio telescopes is already well established. As an example, in this paper, we describe the possibilities of a fully steerable 32-meter radio telescope of Ventspils International Radio Astronomy Centre (VIRAC), Latvia, which can be useful for searching for new precursors of solar flares.

  • articleNo Access

    Supermassive primordial black holes at high redshifts

    We consider some properties and possible observational manifestations of the very heavy primordial black holes (PBHs), with masses (1091010)M. These black holes should be surrounded by the dense dark matter and baryonic halos even at early cosmological epochs. There are mechanisms as for radiation emission in the centers due to accretion and for deep absorption of relic radiation at the periphery of the halos. We calculate the absorption profile in the 21cm line of atomic hydrogen by solving the equations of radiation transfer through the baryonic halo around a PBH. The calculations show that a spherical absorbing layer appears around the object, which can be observed with radio telescopes. Also, at some epochs, shock waves may form at the periphery of the objects. The accelerated charged particles can radiate in radio frequency band, so it is possible that these objects can explain the recently discovered radio circles.

  • articleOpen Access

    A MULTI-BASELINE 12 GHz ATMOSPHERIC PHASE INTERFEROMETER WITH ONE MICRON PATH LENGTH SENSITIVITY

    We have constructed a five station 12 GHz atmospheric phase interferometer (API) for the Submillimeter Array (SMA) located near the summit of Mauna Kea, Hawaii. Operating at the base of unoccupied SMA antenna pads, each station employs a commercial low noise mixing block coupled to a 0.7 m off-axis satellite dish which receives a broadband, white noise-like signal from a geostationary satellite. The signals are processed by an analog correlator to produce the phase delays between all pairs of stations with projected baselines ranging from 33–261 m. Each baseline's amplitude and phase is measured continuously at a rate of 8 kHz, processed, averaged and output at 10 Hz. Further signal processing and data reduction is accomplished with a Linux computer, including the removal of the diurnal motion of the target satellite. The placement of the stations below ground level with an environmental shield combined with the use of low temperature coefficient, buried fiber optic cables provides excellent system stability. The sensitivity in terms of rms path length is 1.3 microns which corresponds to phase deviations of about 1° of phase at the highest operating frequency of the SMA. The two primary data products are: (1) standard deviations of observed phase over various time scales, and (2) phase structure functions. These real-time statistical data measured by the API in the direction of the satellite provide an estimate of the phase front distortion experienced by the concurrent SMA astronomical observations. The API data also play an important role, along with the local opacity measurements and weather predictions, in helping to plan the scheduling of science observations on the telescope.

  • articleOpen Access

    Sardinia Radio Telescope: General Description, Technical Commissioning and First Light

    In the period 2012 June–2013 October, the Sardinia Radio Telescope (SRT) went through the technical commissioning phase. The characterization involved three first-light receivers, ranging in frequency between 300MHz and 26GHz, connected to a Total Power back-end. It also tested and employed the telescope active surface installed in the main reflector of the antenna. The instrument status and performance proved to be in good agreement with the expectations in terms of surface panels alignment (at present 300μmrms to be improved with microwave holography), gain (0.6K/Jy in the given frequency range), pointing accuracy (5 arcsec at 22GHz) and overall single-dish operational capabilities. Unresolved issues include the commissioning of the receiver centered at 350MHz, which was compromised by several radio frequency interferences, and a lower-than-expected aperture efficiency for the 22-GHz receiver when pointing at low elevations. Nevertheless, the SRT, at present completing its Astronomical Validation phase, is positively approaching its opening to the scientific community.

  • articleNo Access

    ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  • articleNo Access

    The Signal Processing Firmware for the Low Frequency Aperture Array

    The signal processing firmware that has been developed for the Low Frequency Aperture Array component of the Square Kilometre Array (SKA) is described. The firmware is implemented on a dual FPGA board, that is capable of processing the streams from 16 dual polarization antennas. Data processing includes channelization of the sampled data for each antenna, correction for instrumental response and for geometric delays and formation of one or more beams by combining the aligned streams. The channelizer uses an oversampling polyphase filterbank architecture, allowing a frequency continuous processing of the input signal without discontinuities between spectral channels. Each board processes the streams from 16 antennas, as part of larger beamforming system, linked by standard Ethernet interconnections. These are envisaged to be 8192 of these signal processing platforms in the first phase of the SKA so particular attention has been devoted to ensure the design is low cost and low power.

  • articleNo Access

    Reducing Effects of Cross-Talk in a Radio Telescope Using Walsh Modulation

    Traditional Walsh technique is used to eliminate cross-talk in a array of radio telescope where achieving synchronization between modulator and demodulator without compromising sensitivity is a real challenge. The paper describes a novel approach named Walsh Delay Hunting (WDH) to synchronize independently running modulator and demodulator with no additional hardware. This approach is unique and can easily be implemented in any existing radio telescope with minimal changes, thus by putting Walsh modulator at telescope and demodulation can be done in digital back-end. The scheme greatly reduces antenna electronics and overhead of sending synchronizing Walsh start pulse back to center station and vice versa. The paper describes WDH method and its feasibility study for Giant Meterwave Radio Telescope (GMRT) along with test results. The modulator is a low cost CPLD-based module and demodulation is done in a Reconfigurable Open Architecture Computing Hardware (ROACH)-based digitizer and packetizer. The scheme requires noise injection facility before modulator, which GMRT has for antenna calibration.

  • articleNo Access

    An Integrated Circuit for Radio Astronomy Correlators Supporting Large Arrays of Antennas

    Radio telescopes that employ arrays of many antennas are in operation, and ever larger ones are being designed and proposed. Signals from the antennas are combined by cross-correlation. While the cost of most components of the telescope is proportional to the number of antennas N, the cost and power consumption of cross-correlation are proportional to N2 and dominate at sufficiently large N. Here, we report the design of an integrated circuit (IC) that performs digital cross-correlations for arbitrarily many antennas in a power-efficient way. It uses an intrinsically low-power architecture in which the movement of data between devices is minimized. In a large system, each IC performs correlations for all pairs of antennas but for a portion of the telescope’s bandwidth (the so-called “FX” structure). In our design, the correlations are performed in an array of 4096 complex multiply-accumulate (CMAC) units. This is sufficient to perform all correlations in parallel for 64 signals (N=32 antennas with two opposite-polarization signals per antenna). When N is larger, the input data are buffered in an on-chip memory and the CMACs are reused as many times as needed to compute all correlations. The design has been synthesized and simulated so as to obtain accurate estimates of the ICs size and power consumption. It is intended for fabrication in a 32nm silicon-on-insulator process, where it will require less than 12mm2 of silicon area and achieve an energy efficiency of 1.76–3.3pJ per CMAC operation, depending on the number of antennas. Operation has been analyzed in detail up to N=4096. The system-level energy efficiency, including board-level I/O, power supplies, and controls, is expected to be 5–7pJ per CMAC operation. Existing correlators for the JVLA (N=32) and ALMA (N=64) telescopes achieve about 5000pJ and 1000pJ, respectively using application-specific ICs (ASICs) in older technologies. To our knowledge, the largest-N existing correlator is LEDA at N=256; it uses GPUs built in 28nm technology and achieves about 1000pJ. Correlators being designed for the SKA telescopes (N=128 and N=512) using FPGAs in 16nm technology are predicted to achieve about 100pJ.

  • articleNo Access

    Frequency Reference Stability and Coherence Loss in Radio Astronomy Interferometers Application to the SKA

    The requirements on the stability of the frequency reference in the square Kilometer array (SKA), as a radio astronomy interferometer, are given in terms of the maximum accepted degree of coherence loss caused by the instability of the frequency reference. In this paper, we analyze the relationship between the characterization of the instability of the frequency reference in the radio astronomy array and the coherence loss. The calculation of the coherence loss from the instability characterization given by the Allan deviation is reviewed. A model of a typical frequency distribution system is presented. The verification of the coherence and frequency reference stability requirements is discussed. Some practical aspects and limitations relevant to the SKA are analyzed.

  • articleNo Access

    Quantization Bias for Digital Correlators

    In radio interferometry, the quantization process introduces a bias in the magnitude and phase of the measured correlations which translates into errors in the measurement of source brightness and position in the sky, affecting both the system calibration and image reconstruction. In this paper, we investigate the biasing effect of quantization in the measured correlation between complex-valued inputs with a circularly symmetric Gaussian probability density function (PDF), which is the typical case for radio astronomy applications. We start by calculating the correlation between the input and quantization error and its effect on the quantized variance, first in the case of a real-valued quantizer with a zero mean Gaussian input and then in the case of a complex-valued quantizer with a circularly symmetric Gaussian input. We demonstrate that this input-error correlation is always negative for a quantizer with an odd number of levels, while for an even number of levels, this correlation is positive in the low signal level regime. In both cases, there is an optimal interval for the input signal level for which this input-error correlation is very weak and the model of additive uncorrelated quantization noise provides a very accurate approximation. We determine the conditions under which the magnitude and phase of the measured correlation have negligible bias with respect to the unquantized values: we demonstrate that the magnitude bias is negligible only if both unquantized inputs are optimally quantized (i.e. when the uncorrelated quantization error model is valid), while the phase bias is negligible when (1) at least one of the inputs is optimally quantized, or when (2) the correlation coefficient between the unquantized inputs is small. Finally, we determine the implications of these results for radio interferometry.

  • articleNo Access

    Baryon Acoustic Oscillations from Integrated Neutral Gas Observations: Radio Frequency Interference Measurements and Telescope Site Selection

    The Baryon acoustic oscillations from Integrated Neutral Gas Observations (BINGO) telescope is a new 40m class radio telescope to measure the large-angular-scale intensity of H i emission at 980–1260MHz to constrain dark energy parameters. As it needs to measure faint cosmological signals at the milliKelvin level, it requires a site that has very low radio frequency interference (RFI) at frequencies around 1GHz. We report on measurement campaigns across Uruguay and Brazil to find a suitable site, which looked at the strength of the mobile phone signals and other radio transmissions, the location of wind turbines, and also included mapping airplane flight paths. The site chosen for the BINGO telescope is a valley at Serra do Urubu, a remote part of Paraíba in North-East Brazil, which has sheltering terrain. During our measurements with a portable receiver, we did not detect any RFI in or near the BINGO band, given the sensitivity of the equipment. A radio quiet zone around the selected site has been requested from the Brazilian authorities ahead of the telescope construction.

  • articleOpen Access

    UniBoard2, A Generic Scalable High-Performance Computing Platform for Radio Astronomy

    With the ever-increasing data rates in radio astronomy, a universal Field Programmable Gate Array (FPGA)-based hardware platform which can be used at different locations in the signal processing chain, like a beamformer, data router or correlator, would reduce development time significantly. In this paper, we present the design of such a platform, the UniBoard2. With UniBoard2, both large rack-based and single-board systems can be made. Standard Quad Small Form-factor Pluggable (QSFP) input and output (IO) interfaces on the front side make it easy to interface UniBoard2 to standard 40 Gigabit Ethernet (GbE) network equipment. Hardware design challenges, like transceiver links, power supplies, power dissipation and cooling are described. The paper concludes with some examples of systems (like beamformers and correlators) that can be built using the UniBoard2 hardware platform.

  • articleNo Access

    The 17–27 GHz Dual Horn Receiver on the NASA 70 m Canberra Antenna

    A dual beam, dual polarization, low noise receiver has been installed at a Cassegrain focus of the NASA 70m antenna near Canberra, Australia. It operates in five pairs of 1GHz bands from 17 to 27GHz simultaneously. The receiver temperature measured at the feed is 21–22K at 22GHz and, during dry winter night-time conditions, zenith system temperatures as low as 35K have been observed in the 21–22GHz band. The native polarization is linear but can be converted to circular prior to down-conversion. The downconverters have complex mixers, followed by quadrature hybrids which can be bypassed or used to convert the quadrature phase channels into an upper and lower sideband, each 1000MHz wide. For spectroscopy, four ROACH1 signal processors each currently providing 32K channel spectra across four 1000MHz bands, for 0.4km/s velocity resolution at 22GHz. Using both beam- and position-switching, the receiver achieved a noise level of 5mK r.m.s. in an hour of integration and 31kHz resolution. The NASA 70m antennas have a 45 arcsec beamwidth at 22GHz and an aperture efficiency of 35.5% giving a sensitivity of 0.49K/Jy.

  • articleNo Access

    An Ultra-High Time Resolution Cosmic-Ray Detection Mode for the Murchison Widefield Array

    The radio-wavelength detection of extensive air showers (EASs) initiated by cosmic-ray interactions in the Earth’s atmosphere is a promising technique for investigating the origin of these particles and the physics of their interactions. The Low-frequency Array (LOFAR) and the Owens Valley Long Wavelength Array (OVRO-LWA) have both demonstrated that the dense cores of low-frequency radio telescope arrays yield detailed information on the radiation ground pattern, which can be used to reconstruct key EAS properties and infer the primary cosmic-ray composition. Here, we demonstrate a new observation mode of the Murchison Widefield Array (MWA), tailored to the observation of the sub-microsecond coherent bursts of radiation produced by EAS. We first show how an aggregate 30.72MHz bandwidth (3072×10kHz frequency channels) recorded at 0.1ms resolution with the MWA’s voltage capture system (VCS) can be synthesized back to the full bandwidth Nyquist resolution of 16.3ns. This process, which involves “inverting” two sets of polyphase filterbanks, retains 90.5% of the signal-to-noise of a cosmic-ray signal. We then demonstrate the timing and positional accuracy of this mode by resolving the location of a calibrator pulse to within 5m. Finally, preliminary observations show that the rate of nanosecond radio-frequency interference (RFI) events is 0.1Hz, much lower than that found at the sites of other radio telescopes that study cosmic rays. We conclude that the identification of cosmic rays at the MWA, and hence with the low-frequency component of the Square Kilometre Array, is feasible with minimal loss of efficiency due to RFI.

  • articleOpen Access

    Radio-Frequency Interference at the McGill Arctic Research Station

    The frequencies of interest for redshifted 21cm observations are heavily affected by terrestrial radio-frequency interference (RFI). We identify the McGill Arctic Research Station (MARS) as a new RFI-quiet site and report its RFI occupancy using 122h of data taken with a prototype antenna station developed for the Array of Long-Baseline Antennas for Taking Radio Observations from the Sub-Antarctic. Using an RFI flagging process tailored to the MARS data, we find an overall RFI occupancy of 1.8% averaged over 20–125MHz. In particular, the FM broadcast band (88–108MHz) is found to have an RFI occupancy of at most 1.6%. The data were taken during the Arctic summer, when degraded ionospheric conditions and an active research base contributed to increased RFI. The results quoted here therefore represent the maximum-level RFI environment at MARS.

  • articleNo Access

    Digitizing MEXART — System Overview and Verification

    The Mexican Array Radio Telescope (MEXART), located in the state of Michoacan in Mexico, has been operating in an analog fashion, utilizing a Butler Matrix to generate fixed beams on the sky, since its inception. Calibrating this instrument has proved difficult, leading to loss in sensitivity. It was also a rigid setup, requiring manual intervention and tuning for different observation requirements. The Radio Frequency (RF) system has now been replaced with a digital one. This digital backend is a hybrid system utilizing both FPGA-based technology and GPU acceleration, and is capable of automatically calibrating the different rows of the array, as well as generating a configurable number of frequency-domain synthesized beams to towards selected locations on the sky. A monitoring and control system, together with a full-featured web-based front-end, has also been developed, greatly simplifying the interaction with the instrument. This paper presents the design, implementation and deployment of the new digital backend, including preliminary analysis of system performance and stability.

  • articleOpen Access

    A Digital Calibration Source for 21 cm Cosmology Telescopes

    Foreground mitigation is critical to all next-generation radio interferometers that target cosmology using the redshifted neutral hydrogen 21 cm emission line. Attempts to remove this foreground emission have led to new analysis techniques as well as new developments in hardware specifically dedicated to instrument beam and gain calibration, including stabilized signal injection into the interferometric array and drone-based platforms for beam mapping. The radio calibration sources currently used in the literature are broad-band incoherent sources that can only be detected as excess power and with no direct sensitivity to phase information. In this paper, we describe a digital radio source which uses Global Positioning Satellite (GPS) derived time stamps to form a deterministic signal that can be broadcast from an aerial platform. A copy of this source can be deployed locally at the instrument correlator such that the received signal from the aerial platform can be correlated with the local copy, and the resulting correlation can be measured in both amplitude and phase for each interferometric element. We define the requirements for such a source, describe an initial implementation and verification of this source using commercial Software Defined Radio boards, and present beam map slices from antenna range measurements using the commercial boards. We found that the commercial board did not meet all requirements, so we also suggest future directions using a more sophisticated chipset.

  • articleOpen Access

    Low-Cost, Low-Loss, Ultra-Wideband Compact Feed for Interferometric Radio Telescopes

    We have developed, manufactured, and tested a new feed design for interferometric radio telescopes with “large-N, small-D” designs. Such arrays require low-cost and low-complexity feeds for mass production on reasonable timescales and budgets, and also require those feeds to be compact to minimize obstruction of the dishes, along with having ultra-wide frequency bands of operation for most current and future science goals. The feed presented in this paper modifies the exponentially tapered slot antenna (Vivaldi) and quad-ridged flared horn antenna designs by having an oversized backshort, a novel method of maintaining a small size that is well-suited for deeper dishes (fD0.25). It is made of laser cut aluminum and printed circuit boards, such that it is inexpensive (75USD per feed in large-scale production) and quick to build; it has a 5:1 frequency ratio, and its size is approximately a third of its longest operating wavelength. We present the science and engineering constraints that went into design decisions, the development and optimization process, and the simulated performance. A version of this feed design was optimized and fabricated for the Canadian Hydrogen Observatory and Radio-transient Detector (CHORD) prototypes. When simulated on CHORD’s very deep dishes (fD=0.21) and with CHORD’s custom first-stage amplifiers, the on-sky system temperature Tsys of the complete receiving system from dish to digitizer remains below 30K over most of the 0.3–1.5GHz band, and maintains an aperture efficiency ηA between 0.4 and 0.6. The entire receiving chain operates at ambient temperature. The feed is designed to slightly under-illuminate the CHORD dishes, in order to minimize coupling between array elements and spillover.

  • articleFree Access

    Low Complexity Radio Frequency Interference Mitigation for Radio Astronomy Using Large Antenna Array

    With the ongoing growth in radio communications, there is an increased contamination of radio astronomical source data, which hinders the study of celestial radio sources. In many cases, fast mitigation of strong radio frequency interference (RFI) is valuable for studying short lived radio transients so that the astronomers can perform detailed observations of celestial radio sources. The standard method to manually excise contaminated blocks in time and frequency makes the removed data useless for radio astronomy analyses. This motivates the need for better RFI mitigation techniques for array of size M antennas. Although many solutions for mitigating strong RFI improves the quality of the final celestial source signal, many standard approaches require all the eigenvalues of the spatial covariance matrix (RM×M) of the received signal, which has O(M3) computation complexity for removing RFI of size d where dM. In this work, we investigate two approaches for RFI mitigation, (1) the computationally efficient Lanczos method based on the Quadratic Mean to Arithmetic Mean (QMAM) approach using information from previously-collected data under similar radio-sky-conditions, and (2) an approach using a celestial source as a reference for RFI mitigation. QMAM uses the Lanczos method for finding the Rayleigh–Ritz values of the covariance matrix R, thus, reducing the computational complexity of the overall approach to O(dM2). Our numerical results, using data from the radio observatory Long Wavelength Array (LWA-1), demonstrate the effectiveness of both proposed approaches to remove strong RFI, with the QMAM-based approach still being computationally efficient.

  • articleNo Access

    TONE: A CHIME/FRB Outrigger Pathfinder for Localizations of Fast Radio Bursts using Very Long Baseline Interferometry

    The sensitivity and field of view of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) has enabled its fast radio burst (FRB) backend to detect thousands of FRBs. However, the low angular resolution of CHIME prevents it from localizing most FRBs to their host galaxies. Very long baseline interferometry (VLBI) can readily provide the subarcsecond resolution needed to localize many FRBs to their hosts. Thus, we developed TONE: an interferometric array of eight 6-m dishes to serve as a pathfinder for the CHIME/FRB Outriggers project, which will use wide field-of-view cylinders to determine the sky positions for a large sample of FRBs, revealing their positions within their host galaxies to subarcsecond precision. In the meantime, TONE’s 3333 km baseline with CHIME proves to be an excellent testbed for the development and characterization of single-pulse VLBI techniques at the time of discovery. This work describes the TONE instrument, its sensitivity, and its astrometric precision in single-pulse VLBI. We believe that our astrometric errors are dominated by uncertainties in the clock measurements which build up between successive Crab pulsar calibrations which happen every 24 h; the wider fields-of-view and higher sensitivity of the Outriggers will provide opportunities for higher-cadence calibration. At present, CHIME-TONE localizations of the Crab pulsar yield systematic one-dimensional localization errors of 0.2 asec — considerably better than the resolution achievable with seeing limited followup observations in the optical/near-infrared from the ground.