Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The design of a robot head for active computer vision tasks is described. The stereo head/eye platform uses a common elevation configuration and has four degree-of-freedom. The joints are driven by DC servo motors coupled with incremental optical encoders and backlash minimizing gearboxes. The details of mechanical design, head controller design, the architecture of the system, and the design criteria for various specifications are presented.
In this paper, we present Furhat — a back-projected human-like robot head using state-of-the art facial animation. Three experiments are presented where we investigate how the head might facilitate human–robot face-to-face interaction. First, we investigate how the animated lips increase the intelligibility of the spoken output, and compare this to an animated agent presented on a flat screen, as well as to a human face. Second, we investigate the accuracy of the perception of Furhat's gaze in a setting typical for situated interaction, where Furhat and a human are sitting around a table. The accuracy of the perception of Furhat's gaze is measured depending on eye design, head movement and viewing angle. Third, we investigate the turn-taking accuracy of Furhat in a multi-party interactive setting, as compared to an animated agent on a flat screen. We conclude with some observations from a public setting at a museum, where Furhat interacted with thousands of visitors in a multi-party interaction.
The design of a robot head for active computer vision tasks is described. The stereo head/eye platform uses a common elevation configuration and has four degree-of-freedom. The joints are driven by DC servo motors coupled with incremental optical encoders and backlash minimizing gearboxes. The details of mechanical design, head controller design, the architecture of the system, and the design criteria for various specifications are presented.