Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Extracting to enhance the accuracy of diagnosing bearing faults in steam turbines, a novel approach focused on extracting key fault features from vibration signals is introduced. Recognizing the complex, non-linear, and non-stationary nature of bearing vibration signals, our strategy involves a sensitivity analysis utilizing a multivariate diagnostic algorithm. The process begins with collecting vibration data from defective bearings via the TMI system. This data is then subjected to Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), enabling the integration of adaptive noise for the extraction of in-depth information. Following this, an analysis in both time and frequency domains — post Fast Fourier Transform (FFT) — is conducted on the decomposed signals, forming the basis of a diagnostic features database. To streamline data analysis and boost the model’s computational efficiency, a combination of eXtreme Gradient Boosting (XGBoost) and Mutual Information Criterion (MIC) is applied for dimensionality reduction. Furthermore, a deep belief network (DBN) is implemented to develop a precise fault diagnosis model for the bearings in rotating machinery. By incorporating sensitivity analysis, a diagnostic matrix is crafted, facilitating highly accurate fault identification. The superiority of this diagnostic algorithm is corroborated by testing with real on-site data and a benchmark database, demonstrating its enhanced diagnostic capabilities relative to other feature selection techniques.
Nonlinear dynamics of a real plane and periodically forced triple pendulum is investigated experimentally and numerically. Mathematical modeling includes details, taking into account some characteristic features (for example, real characteristics of joints built by the use of roller bearings) as well as some imperfections (asymmetry of the forcing) of the real system. Parameters of the model are obtained by a combination of the estimation from experimental data and direct measurements of the system's geometric and physical parameters. A few versions of the model of resistance in the joints are tested in the identification process. Good agreement between both numerical simulation results and experimental measurements have been obtained and presented. Some novel features of our real system chaotic dynamics have also been reported, and a novel approach of the rolling bearings friction modeling is proposed, among other.