Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    INTRODUCTION TO DARK MATTER EXPERIMENTS

    I provide an introduction to experiments designed to detect WIMP dark matter directly, focussing on building intuitive understanding of the characteristics of potential WIMP signals and the experimental techniques. After deriving the characteristics of potential signals in direct-detection experiments for standard WIMP models, I summarize the general experimental methods shared by most direct-detection experiments and review the advantages, challenges, and status of such searches. Experiments are already probing SUSY models, with best limits on the spin-independent coupling below 10-7 pb. Combined information from direct and indirect detection, along with detection at colliders, promises to teach us much about fundamental particle physics, cosmology, and astrophysics.

  • articleNo Access

    Status of searches for electroweak-scale supersymmetry after LHC Run 2

    The second period of datataking at the Large Hadron Collider (LHC) has provided a large dataset of proton–proton collisions that is unprecedented in terms of its centre-of-mass energy of 13 TeV and integrated luminosity of almost 140 fb1. These data constitute a formidable laboratory for the search for new particles predicted by models of supersymmetry. The analysis activity is still ongoing, but a host of results on supersymmetry had already been released by the general purpose LHC experiments ATLAS and CMS. In this paper, we provide a map into this remarkable body of research, which spans a multitude of experimental signatures and phenomenological scenarios. In the absence of conclusive evidence for the production of supersymmetric particles we discuss the constraints obtained in the context of various models. We finish with a short outlook on the new opportunities for the next runs that will be provided by the upgrade of detectors and accelerator.

  • articleNo Access

    MSSM HIGGS PHYSICS AT HIGHER ORDERS

    Various aspects of the Higgs boson phenomenology of the Minimal Supersymmetric Standard Model (MSSM) are reviewed. Emphasis is put on the effects of higher-order corrections. The masses and couplings are discussed in the MSSM with real and complex parameters. Higher-order corrections to Higgs boson production channels at a prospective e+e- linear collider are investigated. Corrections to Higgs boson decays to SM fermions and their phenomenological implications for hadron and lepton colliders are explored.

  • articleNo Access

    (g2)μ and SUSY

    The persistent 34σ discrepancy between the experimental result from Brookhaven National Laboratory (BNL) for the anomalous magnetic moment of the muon, (g2)μ, and its Standard Model (SM) prediction, was confirmed recently by the “MUON G-2” result from Fermilab. The combination of the two measurements yields a deviation of 4.2σ from the SM value. Here, we review an analysis of the parameter space of the electroweak (EW) sector of the Minimal Supersymmetric Standard Model (MSSM), which can provide a suitable explanation of the anomaly while being in full agreement with other latest experimental data like the direct searches for EW particles at the LHC and dark matter (DM) relic density and direct detection constraints. Taking the lightest supersymmetric particle (LSP) (the lightest neutralino in our case) to be the DM candidate, we discuss the case of a mixed bino/wino LSP, which can account for the full DM relic density of the universe and that of wino and higgsino DM, where we take the relic density only as an upper bound. We observe that an upper limit of 600GeV can be obtained for the LSP and next-to (N)LSP masses establishing clear search targets for the future HL-LHC EW searches, but in particular for future high-energy e+e colliders such as the ILC or CLIC.

  • articleNo Access

    Top squark signal significance enhancement by different machine learning algorithms

    In this paper, a study of four different machine learning (ML) algorithms is performed to determine the most suitable ML technique to disentangle a hypothetical supersymmetry (SUSY) signal from its corresponding Standard Model (SM) backgrounds and to establish their impact on signal significance. The study focuses on the production of SUSY top squark pairs (stops), in the mass range of 500<m˜t1<800GeV, from proton–proton collisions with a center of mass energy of 13TeV and an integrated luminosity of 140fb1, emulating the data-taking conditions of the run II Large Hadron Collider (LHC) accelerator. In particular, the semileptonic channel is analyzed, corresponding to final states with a single isolated lepton (electron or muon), missing transverse energy, and four jets, with at least one tagged as b-jet. The challenging compressed spectra region is targeted, where the stop decays mainly into a W boson, a b-jet, and a neutralino (˜t1W+b+˜χ01), with a mass gap between the stop and the neutralino of about 150GeV. The ML algorithms are chosen to cover different mathematical implementations and features in ML. We compare the performance of a logistic regression (LR), a Random Forest (RF), an eXtreme Gradient Boosting, XGboost (XG) and a Neural Network (NN) algorithm. Our results indicate that XG and NN classifiers provide the highest improvements (over 17%) in signal significance, when compared to a standard analysis method based on sequential requirements of different kinematic variables. The improvement in signal significance provided by the NN increases up to 31% for the highest stop mass considered in this study (800GeV). The RF algorithm presents a smaller improvement that decreases with stop mass. On the other hand, the LR algorithm shows the worst performance in signal significance which even does not compete with the results obtained by an optimized cut and count method.

  • articleNo Access

    Yangian and SUSY symmetry of high spin parton splitting amplitudes in generalised Yang–Mills theory

    We have calculated the high spin parton splitting amplitudes postulating the Yangian symmetry of the scattering amplitudes for tensor gluons. The resulting splitting amplitudes coincide with the earlier calculations, which were based on the BCFW recursion relations. The resulting formula unifies all known splitting probabilities found earlier in gauge field theories. It describes splitting probabilities for integer and half-integer spin particles. We also checked that the splitting probabilities fulfil the generalised Kounnas–Ross 𝒩 = 1 supersymmetry relations hinting to the fact that the underlying theory can be formulated in an explicit supersymmetric manner.