Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The changes in neuronal firing activity in the primary motor cortex (M1) and supplementary motor area (SMA) were compared in monkeys rendered parkinsonian by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The neuronal dynamic was characterized using mathematical tools defined in different frameworks (rate, oscillations or complex patterns). Then, and for each cortical area, multivariate and discriminate analyses were further performed on these features to identify those important to differentiate between the normal and the pathological neuronal activity. Our results show a different order in the importance of the features to discriminate the pathological state in each cortical area which suggests that the M1 and the SMA exhibit dissimilarities in their neuronal alterations induced by parkinsonism. Our findings highlight the need for multiple mathematical frameworks to best characterize the pathological neuronal activity related to parkinsonism. Future translational studies are warranted to investigate the causal relationships between cortical region-specificities, dominant pathological hallmarks and symptoms.
Background: Proprioception and sensorimotor input are used to treat neurological and joint injuries. Following distal radius fractures (DRF) there is a temporary loss of proprioception that should be addressed. We created a protocol for evaluation, and a treatment plan following wrist surgery that is based on proprioceptive and sensorimotor input. We describe a series of patients undergoing surgery for DRF that were evaluated and treated with these protocols.
Methods: Both evaluation and treatment protocols included comprehensive sensorimotor procedures performed with eyes open and closed. These included Semmes- Weinstein, static and moving 2-point discrimination, vibration, temperature testing, Moberg pick-up- test, stereognosis and proprioception.
Results: A series of twelve patients was evaluated and treated with the protocol following surgical treatment for DRF. Patients demonstrated significant sensorimotor deficits, which improved utilizing the comprehensive sensorimotor treatment protocol.
Conclusions: Further study is necessary to validate the results of this pilot series. Use of proprioception and sensorimotor input may improve outcomes of rehabilitation following DRF.