An aromatic diamine monomer, 4,4′-bis(3-amino-5-trifluoromethyl phenoxy)-biphenyl (TFBPDA), was synthesized via the nucleophilic displacement reaction of 3,5-dinitrobenzotrifluoride and 4,4′-biphenol. The monomer was reacted with various aromatic dianhydrides via the high temperature polycondensation procedure to provide a series of polyimides. The polyimides, PI-1 to PI-4, show good solubility not only in aprotic solvents, such as N-methyl-2-pyrrolidinone and N,N-dimethylacetamide, but also in many common solvents, such as m-cresol, chloroform and cyclopentanone. PI-4, derived from 4,4′-(hexafluoroisopropylidene)diphthalic anhydride and TFBPDA, was even soluble in toluene. Moreover, PI films exhibit good thermal stability, outstanding transparency in the visible light region and acceptable mechanical and electrical properties. The excellent combined properties of the polyimides make them as a good candidate for fabricating microelectronics.