Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We derive a formula expanding the bracket with respect to a natural deformation parameter. The expansion is in terms of a two-variable polynomial algebra of diagram resolutions generated by basic operations involving the Goldman bracket. A functorial characterization of this algebra is given. Differentiability properties of the star product underlying the Kauffman bracket are discussed.
This paper is an unpublished version of a talk that the author gave in Brazil in 1987 at a meeting of the Brazilian Mathematical Society, while visiting Sostenes Lins in Recife, Brazil. The paper is an introduction to state models for link invariants, and it gives a surface-genus interpretation of the extreme terms in the bracket polynomial.
We present a state sum construction of two-dimensional extended Topological Quantum Field Theories (TQFTs), so-called open-closed TQFTs, which generalizes the state sum of Fukuma–Hosono–Kawai from triangulations of conventional two-dimensional cobordisms to those of open-closed cobordisms, i.e. smooth compact oriented 2-manifolds with corners that have a particular global structure. This construction reveals the topological interpretation of the associative algebra on which the state sum is based, as the vector space that the TQFT assigns to the unit interval. Extending the notion of a two-dimensional TQFT from cobordisms to suitable manifolds with corners therefore makes the relationship between the global description of the TQFT in terms of a functor into the category of vector spaces and the local description in terms of a state sum fully transparent. We also illustrate the state sum construction of an open-closed TQFT with a finite set of D-branes using the example of the groupoid algebra of a finite groupoid.
This paper shows how the Formal Knot Theory state model for the Alexander–Conway polynomial is related to Knot Floer Homology. In particular, we prove a parity result about the states in this model that clarifies certain relationships of the model with Knot Floer Homology.
We introduce defects, with internal gauge symmetries, on a knot and Seifert surface to a knot into the combinatorial construction of finite gauge-group Dijkgraaf–Witten theory. The appropriate initial data for the construction are certain three object categories, with coefficients satisfying a partially degenerate cocycle condition.
This paper is an introduction to combinatorial knot theory via state summation models for the Jones polynomial and its generalizations. It is also a story about the developments that ensued in relation to the discovery of the Jones polynomial and a remembrance of Vaughan Jones and his mathematics.