Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Spatial Wavefunction Switched (SWS) FET SRAM Circuits and Simulation

    This paper presents the design and simulation of static random access memory (SRAM) using two channel spatial wavefunction switched field-effect transistor (SWS-FET), also known as a twin-drain metal oxide semiconductor field effect transistor (MOS-FET). In the SWS-FET, the channel between source and drain has two quantum well layers separated by a high band gap material between them. The gate voltage controls the charge carrier concentration in the quantum well layers and it causes the switching of charge carriers from one channel to other channel of the device. The standard SRAM circuit has six transistors (6T), two p-type MOS-FET and four n-type MOS-FET. By using the SWSFET, the size and the number of transistors are reduced and all of transistors are n-channel SWS-FET. This paper proposes two different models of the SWS-FET SRAM circuits with three transistors (3T) and four transistors (4T) also addresses the stability of the proposed SWS-FET SRAM circuits by using the N-curve analysis. The proposed models are based on integration between Berkeley Shortchannel IGFET Model (BSIM) and Analog Behavioral Model (ABM), the model is suitable to investigate the gates configuration and transient analysis at circuit level.

  • articleNo Access

    Logic Gates Design and Simulation Using Spatial Wavefunction Switched (SWS) FETs

    This paper presents the design and modeling of logic gates using two channel spatial wavefunction switched field-effect transistors (SWSFETs) it is also known as a twin-drain MOSFET. In SWSFETs, the channel between source and drain has two or more quantum wells (QWs) layers separated by a high band gap material between them. The gate voltage controls the charge carrier concentration in the two quantum wells layers and it causes the switching of charge carriers from one channel to other channel of the device. The first part of this paper shows the characteristics of n-channel SWSFET model, the second part provides the circuit topology for the SWSFET inverter and universal gates- NAND, AND, NOR,OR, XOR and XOR. The proposed model is based on integration between Berkeley Short-channel IGFET Model (BSIM) and Analog Behavioral Model (ABM), the model is suitable to investigate the gates configuration and transient analysis at circuit level. The results show that all basic two-input logic gates can be implanted by using n-channel SWSFET only, It covers less area compared with CMOS (Complementary metal–oxide–semiconductor) gates. The NAND-NOR can be performed by three SWSFET, moreover the exclusive-NOR “XNOR” can be done by four SWSFET transistors also AND, OR, XOR gates require two additional SWSFET for inverting.

  • articleNo Access

    Compact 1-Bit Full Adder and 2-Bit SRAMs Using n-SWS-FETs

    This paper presents Spatial Wavefunction Switched (SWS)-FETs have been proposed to implement ternary and quaternary logic, 2-bit DRAM cells, and static random-access memories (SRAMs) in nMOS-SWS and CMOS-SWS configurations. This paper presents simulation of a 1-bit Full Adder using n-SWS-FETs. In addition, simulation of 2-bit SRAMs is presented for a quantum dot channel and a four quantum well nSWS-FET.SRAMs.

  • articleNo Access

    Threshold Inverter Quantizer (TIQ)-Based 2-Bit Comparator Using Spatial Wavefunction Switched (SWS) FET Inverters

    A Threshold Inverter Quantizer (TIQ)-based voltage comparator is used to quantize analog input signal in flash ADC designs. This quantizer is based on the systematic sizing of CMOS inverter thus eliminating resistor array which is used for conventional comparator array. Such an implementation removes static power during quantization of analog input signal. This paper presents a simulation of TIQ 2-bit-based comparator using spatial wavefunction switched (SWS) field effect transistor (FET)-based CMOS inverters. The inverters use 4-state SWSFETs. Unlike conventional FETs, SWSFETs consist of two or more vertical coupled arrays of either quantum dot or quantum well channels, where the spatial location of carriers within these channels is used to encode the logic states (00), (01), (10), and (11). The TIQ-based comparator circuit presented here is based on the 2-bit SWS-CMOS inverter. The schematic of the ADC comparator circuit is demonstrated as well as the 2-bit ADC configuration cascading two 2-bit SWSFET-based inverters in CMOS-X. The circuit simulation was done in Cadence and SWSFET was modeled by integrating Berkeley Short-Channel IGFET Model (BSIM) and the Analog Behavioral Model (ABM). The 2-bit comparator circuit provides a four-state logic output voltage for any given analog input signal.